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Spatial Statistics
I Suppose we have some data that’s spatially indexed

{Yi (si ), {Xij}|si ∈ Ds , i = 1, · · · ,N, j = 1, · · · , ni}

where Y (s) are our observed data, {Xij} are covariates, and
Ds is the region in space we observe data. We’d like to model
the observed data while taking into account the spatial nature
of the data.

I If we’re working in a GLM framework, we could write the
desired model as

Yi (si )|ηi ∼ Exponential Family(ηi ),

where for an appropriate link function g ,

g(ηi ) =

ni∑
j=1

βjXij + f (si ),

where f is some spatial random effect.
I How do we specify f ?



Gaussian Processes

I The canonical way to specify the spatial random effect is
through a Gaussian Process (GP), or more generally a
Gaussian Field.

I Can think of a GP as a distribution over functions which are
indexed by some underlying set, like space (what we care
about) or time.

I GPs are completely specified through a mean function µ and a
positive semi-definite covariance function (kernel) c . The
mean function is usually taken to be known and equal to 0.



Gaussian Processes
Example from Keyon Vafa. Here are some samples from a GP
indexed by R, with a rational quadratic covariance function, which
is defined as:

c(x , x ′) =

(
1 +

(x − x ′)2

2αl2

)−α
.

http://keyonvafa.com/gp-tutorial/


Gaussian Processes

I Key Fact: If f ∼ GP(0, c), then for any finite collection of
points in the index set {s1, · · · , sn}, the process evaluated at
these points is jointly Gaussian

{f (s1), · · · , f (sn)} ∼ MVN(0,Σ),

where Σij = c(si , sj).

I The covariance matrix Σ is sometimes called the Gram matrix.



Gaussian Processes: Main Problem

I In order to use a GP in practice, you’re going to have to either
calculate the determinant or find the inverse of the covariance
matrix.

I For example you may want to evaluate the density:

π(f (s)) =
1√

(2π) det(Σ)
exp

{
1

2
f (s)TΣ−1f (s)

}
.

I Calculating the determinant or finding the inverse of a generic
covariance matrix is O(n3), which for more than a couple
thousand points is intractable.



Gaussian Markov Random Fields

I There are a certain class of multivariate Gaussians that are
much more computationally tractable than GPs, called
Gaussian Markov Random Fields (GMRFs).

I If x ∼ MVN(µ,Σ) is a GMRF, then for some components xi
and xj , xi |= xj |x−ij .

I The important part is that this leads to a sparse precision
matrix, which is Q = Σ−1.

I In particular, if xi |= xj |x−ij , then Qij = Qji = 0.



Gaussian Markov Random Fields

I When you specify a Gaussian in terms of a sparse precision
matrix, the cost to compute determinants and find the
covariance matrix goes down to O(n3/2), which is much more
tractable than the generic case.

I However, nearly all GMRFs in the spatial literature are
specified discretely, rather than continuously, through graphs
or lattices.



What We’re Working Towards

I We’d like to be able to specify, and actually use, a continuous
spatial model that’s computationally tractable and accurate.

I We know how to specify continuous spatial models using
Gaussian Processes, and we know that GMRFs are
computationally tractable.

I So how do we represent a GP as a GMRF?



Markovian Gaussian Processes

I When the index space of a GP is one dimensional, like with
time, Markov properties are relatively straightforward to think
about/ encode in a covariance function.

I When the index of a GP is space, like we want, it’s harder to
nail down what being Markov means.



Some Theory

I The Fourier transform of the covariance function of a
stationary GP on R2, called the power spectrum, is given by

R(k) =
1

(2π)2

∫
R2

exp(−ikTh)c(h)dh.

I Note that when we evaluate the kernel at a point, c(h), we’re
using the stationarity of the kernel (really evaluating it at two
points that differ by h).

I Apparently some Russian in the 70s showed that a stationary
GP is Markov iff R(k) = 1

p(k) for some positive symmetric
polynomial p.

I This doesn’t seem that helpful!



Some Theory

I Can define the covariance operator of a Markovian GP as

C [g ](h) =

∫
R2

c(h′ − h)f (h′)dh′ =

∫
R2

exp(−ikTh)
ĝ(k)

p(k)
dk,

where g is a smooth function that goes to zero rapidly at
infinity, ĝ is it’s Fourier transform, and p the inverse of the
power spectrum.

I Can think of this as the functional analog of the covariance
matrix (can talk about eigenvalues and eigenfunctions of the
operator).



Some Theory

I The covariance operator has inverse, which is the (surprise)
precision operator, defined for a Markovian GP as

Q[g ](h) =

∫
R2

exp(−ikTh)ĝ(k)p(k)dk =
∑
|i |≤`

aiD
ig(h),

where ai are the coefficients of p, ` is the degree of p, and D i

are appropriate differential operators.

I Ok so what’s the point?

I It can be shown that a GP is Markovian iff it’s precision
operator is of this differential form.

I Note that the differential operator is local, whereas the
integral form of the covariance is global!

I So we have some guidance on how to find a Markov GP!



The Matern Kernel
I One of the most common covariance functions used in

practice is the Matern covariance, given by:

c(s, s ′) =
σ2

2ν−1Γ(ν)
(κ||s − s ′||)νKν(κ||s − s ′||),

where σ is a variance parameter, ν is a smoothness parameter,
κ is a range parameter, and Kν is the modified Bessel function
of the second kind with parameter ν.

I Consider in R2, the following stochastic partial differential
equation (SPDE)

(κ−∆)α/2f (s) = W (s),

where α = ν + 1 > 0, ∆ = ∂2

∂s21
+ ∂2

∂s22
is the 2 dimensional

Laplacian (the trace of the Hessian), and W (s) is Gaussian
white noise

I It turns out that the solution f (s) to this SPDE is a GP with
a Matern covariance with the respective parameters!



The Markov Connection

I It can be shown that when α is an integer, the precision
operator of f (s) as defined by the SPDE is

Q = (κ−∆)α.

I From our bit of theory, we see that GPs with Matern kernels
and integer ν are actually Markov!

I Now how do we take advantage of this fact in order to find a
computationally tractable representation of GPs with Matern
kernels?



Approximating an SPDE: Finite Element Method

I We’ll consider approximations to f (s) of the form

f (s) ≈ fa(s) =
n∑

i=1

wiφi (s),

where the weights wi are jointly Gaussian and φi are
appropriately chosen basis functions.

I So how do we choose the basis functions so that the
approximation has a Markov form?

I The first step is to triangulate our spatial region of interest.

I Basis functions then correspond to piecewise linear functions
defined on the verticies of the triangulation.



Triangulation



Weak Solutions and Weighted Basis Functions

I Going to just consider α = 2, or equivalently ν = 1.

I Letting Ds ∈ R2, we have that any solution to the SPDE
defined before also satisfies, for any suitable ψ(s),∫

Ds

ψ(s)(κ−∆)f (s) =

∫
Ds

ψ(s)W (ds).

I So how do we choose ψ? Can’t test all possible functions, so
how about just {φj}nj=1?



Weak Solutions and Weighted Basis Functions

I Using the basis functions as our test functions, we arrive then
at the following system of linear equations after using Green’s
formula (something you might have seen in multivariable
calculus):

n∑
i=1

(
κ2
∫
Ds

φi (s)φj(s)ds +

∫
Ds

∇φi (s)∇φj(s)ds

)
wi =

∫
Ds

φj(s)W (ds),

for j = 1, · · · , n.

I Due to the piecewise linear nature of the basis functions, all of
the integrals can be easily computed! In particular, the white
noise integral is Gaussian with zero mean and covariance
given by C̃ij =

∫
Ds
φi (s)φj(s)ds.



The Final Approximation

I Letting

Gij =

∫
Ds

∇φi (s)∇φj(s)ds,

we arrive at
(κC̃ + G )w ∼ MVN(0, C̃ ).

I However, C̃−1 is dense, so we approximate it with

C = diag

(∫
Ds

φi (s)ds, i = 1, · · · , n
)
.

I The solution w is then a GMRF with sparse precision matrix

Q = (κC̃ + G )TC (κC̃ + G ).



Generalizations

I Can generalize this approach to non-stationary, anisotropic,
GPs on general manifolds!

I All you have to do is appropriately alter the SPDE.


	Background
	Theory
	SPDE

