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Univariate Gaussian spatial regression

I Assume we have observations y(s) measured at set of n spatial
locations S = {s1, . . . , sn}, where s ∈ D ⊆ R2 and

y(si) = x(si)
Tβ + w(si) + ε(si)

I x(s) is a set of spatially referenced covariates

I w(s) is a spatial Gaussian process with mean zero and
covariance function C (s, t|θ). For the set of n observation
locations, α = (w(s1), . . . ,w(sn))T and K(θ) is its n × n
covariance matrix.

I ε(s) is an independent white-noise process to capture
measurement error and micro-scale variation, where
ε(si) ∼ N(0, τ 2)
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Low-rank predictive process models

For large data sets, using a low-rank representation of the spatial
field will speed computations.

I Consider a set of r knots S∗ = {s∗1, . . . , s∗r }, which may but need
not be a set of the entire collection of observed locations in
S = {s1, . . . , sn}, but r � n.

I Assume that w(s) ∼ GP(0,C (·|θ)) and let w ∗ be a realization
of w(s) over S∗. That is, w ∗ ∼ N(0,C ∗(θ))

I Define the predictive process as

w̃(s) = E [w(s) | w(s∗i ), i = 1, 2, . . . , r ]

I The realizations of w̃(s) are the kriged predictions conditional on
a realization of w(s) over S∗
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Multivariate Gaussian spatial regression
I Consider case where m point-referenced outcomes are measured

at each location si and regressed on a known set of predictors.
Then for j = 1, 2, . . . ,m

yj(si) = x j(si)
Tβj + wj(si) + εj(si)

I where ε(s) = (ε1(s), ε2(s), . . . , εm(s))T ∼ N(0,Ψ),
I spatial variation follows a m × 1 GP:
w(s) = (w1(s),w2(s), . . . ,wm(s)) ∼ GP(0,Cw (s, t))

I Cw (s, t) is a cross-covariance matrix with entries being
covariance between wj(s) and wk(t).

I Use linear model of coregionalization to specify cross covariance,
which assumes Cw (s, t) = AM(s, t)A, where A is m ×m lower
triangular and M(s, t) is m ×m diagonal with correlation
functions as entries.
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Non-Gaussian models

I Spatial GLMs, where dependent (response) variables are
non-Gaussian.

I Replace the Gaussian likelihood with the assumption that
E[y(s)] is linear on a transformed scale. That is,

η(si) ≡ g(E[y(si)])

= x(si)
Tβ + w(si)

where g(·) is a suitable link function.

I spBayes also provides low-rank predictive process models for
spatial GLMs.

5 / 14



Dynamic spatio-temporal models

I Assume continuous space and discrete time.

I The model equations are

yt(si) = x t(si)
Tβt + ut(si) + εt(si)

βt = βt−1 + ηt

ut(si) = ut−1(si) + wt(si)

I where
εt(s) ∼ N(0, τ 2t )

ηt ∼ Np(0,Ση)

wt(s) ∼ GP(0,Ct(·|θt))

I and β0 ∼ N(µ0,Σ0) and u0(s) ≡ 0
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Bayesian inference

I Given a likelihood p(y | θ) and a prior p(θ) we can use the
relationship p(y ,θ) = p(y | θ)p(θ) and Bayes Rule to find the
posterior distribution p(θ | y).

I By Bayes Rule the posterior distribution is:

p(θ | y) =
p(y | θ)p(θ)

p(y)

=
p(y | θ)p(θ)∫
p(y | θ)p(θ)dθ

I The integral in the denominator is almost always intractable, but
we don’t need to worry about it. We can use Markov chain
Monte Carlo (MCMC) to sample from the posterior even if we
do not know the exact form of the posterior distribution.
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MCMC: Metropolis-Hastings

I We can use a Markov chain with stationary distribution equal to
the posterior distribution to generate samples from the posterior,
where the samples are a sequence of draws θ(1),θ(2), . . . ,θ(k)

I One way to do this is with the Metropolis-Hastings algorithm:

1. Start with arbitrary starting value θ(0) where p(θ(0) | y) > 0.
Set k = 1

2. Draw proposed value θ∗ from proposal density q(θ∗|θ(k−1)).
3. Set θ(k) = θ∗ with probability

α = min

{
1,

p(θ∗|y)
p(θ(k−1)|y)

q(θ(k−1)|θ∗)
q(θ∗|θ(k−1))

}
;

otherwise set θ(k) = θ(k−1).
4. Set k = k + 1 and go back to 2.
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MCMC: Gibbs Sampling

I If the complete conditional marginal distributions have known
forms we can use Gibbs sampling.

I Gibbs Sampler:

1. Set arbitrary starting values
{
θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
m

}
and set k = 1.

2. Draw θ
(k)
1 ) from p(θ1|θ(k−1)2 , θ

(k−1)
3 , . . . , θ

(k−1)
m )

3. Draw θk(2) from p(θ2|θ(k)1 , θ
(k−1)
3 , . . . , θ

(k−1)
m )

4. Draw θk(3) from p(θ3|θ(k)1 , θ
(k)
2 , . . . , θ

(k−1)
m )

...
m. Draw θk(m) from p(θm|θ(k)1 , θ

(k)
2 , . . . , θ

(k)
m−1)
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General model description

Assuming normally-distributed observations, the posterior of many of
the models can be written:

N(y |Xβ + Z (θ)α,D(θ))× N(β|µβ,Σβ)× N(α|0,K (θ))× p(θ)

I where K (θ) and D(θ) are families of r × r and n× n covariance
matrices, respectively, and

I Z (θ) is n × r with r � n, and θ are unknown process
parameters

I Assume that µβ and Σβ are known hyperparameters

I Inference carried out by sampling from posterior of {β,α,θ}
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Sampling process parameters

I First integrate β and α from the model and sample θ from

p(θ|y) ∝ N(y |Xµβ,Σy |θ)× p(θ)

I where Σy |θ = XΣβX
T + Z (θ)K (θ)Z (θ)T +D(θ)

I Use Gibbs sampling and random walk Metropolis

I Avoid calculating inverses by using Cholesky factorizations and
solving triangular systems. Use matrix-vector multiplications and
sparse matrix calculations where possible.
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Sampling slope and random effects

I Once have marginal posterior samples of θ from p(θ|y), draw β
and α using composition sampling.

I Suppose
{
θ(1),θ(2), . . .θ(M)

}
are M samples from p(θ|y)

I Drawing β(k) ∼ p(β|θ(k), y) and α(k) ∼ p(α|θ(k), y) for
k = 1, 2, . . . ,M results in M samples from p(β|y) and p(α|y)

I Uses Gibbs sampling

I Use efficient matrix calculations and other tricks to simplify
computations

I Computations can become prohibitive for large n
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Low rank models

I To reduce computational burden of large n, specify Z (θ) with
r � n in predictive process model.

I First integrate α from the posterior to get

p(β,θ|y) ∝ N(y |Xµβ,Σy |β,θ)× N(β|µβ,Σβ)× p(θ)

I Use Gibbs sampling to alternately update β and θ

I When have posterior samples for β and θ, can now draw
samples of α from its full conditional distribution given both β
and θ with methods similar to those for full rank model.
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