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Topics

v

Spatial GLMs and GLMMs

Gaussian-log-Gaussian (GLG) mixture modeling

v

v

Bayesian Nonparametrics (stick breaking priors)

Others (not discussed here)

» Spatial Deformation Method
» Copulas
» Transform data directly before modeling (e.g. Box-Cox)
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Spatial Generalized Linear Mixed Models (GLMMs):
Formulation

» [Y(si)|n,B], i =1,...,mis conditionally independent for any
location, s;, with conditional mean E[Y(s;)|n, 8] = u(si)

> g(n)=XB+Hn+e

g(+) link function

X linear fixed effects

Hn latent random effects (spatial process, typically Gaussian)
e ~ N(0,02/) site-specific random variation
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Spatial Generalized Linear Mixed Models (GLMMs):
Computation

» Likelihood not directly computable:

L(B,6;Y) = /Hf s)lm,6) dn

» Possible alternatives:
» EM (Zhang, 2002)
» Composite (pairwise) likelihood (e.g. Varin, Host, and Skare
2005)
» MCMC
> Langevin updates for 1) suggested (e.g. Diggle and Robeiro,
2007)
> If £ is included, one can use conjugate MVN Gibbs updates
for n if o= known or nearly known (e.g. Wikle 2002, Royle
and Wikle, 2005)

» geoRglm R package (Diggle and Ribeiro, 2007)



Gaussian-log-Gaussian (GLG) mixture model

» Palacias and Steel (2006) suggest the model:

yi = x(s; )T,B‘i‘\/—r‘i‘f:

» n ~ N(0,02Cy) Spatial process
> log(A) ~ N (—%1,vCg) mixing variables independent of 7, €
> € iid mean zero variance 72 normal noise (“nugget’)




Gaussian-log-Gaussian (GLG) mixture model

= x(s; )Tﬁ+\/—)\—‘|‘€:

FIGURE 11.1

Marginal probability density function of mixing variables ; for various values of v. Solid line v = 0.01, short
dashes: v = 0.1, long dashes: v = 1.




Gaussian-log-Gaussian (GLG) mixture model

yi=x(s) B+ P+ ¢
1

Nice properties:

EN]=1

Var(\j) = exp{v} -1
v—0=X— 1=y, — (Gaussian)
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Large v = heavy-tailed, highly skewed distribution

v

Easily computable correlation function




Stick Breaking Priors

In order to have nonparametric model in Bayesian setting we need
a prior over an infinite-dimensional model space:

Definition
A random probability distribution, F, has a stick-breaking prior if:

B N
F= ZP:‘%;
i—1

where 4, is a Dirac measure at z, p; = V; [[;;(1 — V;) where

Vi, Vvt i Beta(aj, b;), and 64, ...,0y " H for centering (aka
base) distribution H. Here, N could be infinite.



Stick Breaking Priors

When N = oo, there are several well-known priors in this class:

» Dirichlet Process Prior (see Ferguson, 1973 and Sethuraman,
1994)

» The Pitman-Yor (or two-parameter Poisson-Dirichlet) process




Generalized Spatial Dirichlet Process

» The main idea is to allow the 8;'s in our stick-breaking prior
to be spatially dependent (Duan, Guindani, and Gelfand 2007
and Gelfand, Guindani, and Petrone, 2007)

» Allow the surface selection to depend on location:

F(n) 4 > D pinin06, -0,

=1 =1

for i; = i(s;) are the location indices and ¢; locations are
drawn from centering random field H. Weights p;, ; are
distributed independently from the locations on the infinite
unit simplex.

» Constraints on the weights allow for smooth (mean square
continuous) random probability measure

» Note: this requires replications in time
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Hybrid Dirichlet Mixture Models

» Petrone, Guindani, and Gelfand (2009) take previous model
further using species sampling prior, which is more general
than stick-breaking prior (the weights, V;, are allowed to be
general). The model is:

yi|0: " Npn(6;, 0%1,m),

iid
0'|FX17 Xm ™ FX1, Xm)

X17 X E E Jl?' 7Jm 117 7jmm

A=l jm=1

where:
» p(j1,--.,Jm) is proportion of (hybrid) species (8}, 1,...,6;, m) in
the population, and 0; = (61, ...,0j.m) M H
» H typically Gaussian process
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Order-Based Dependent Dirichlet Processes (mDDPs)

v

Griffon and Steel (2006)

Unlike previous nonparametric Bayesian methods presented,
doesn't require replication of spatial fields

v

v

Define rankings of weights, V, via orderings, 7 (s)

Since p; = Vi [[;.;(1 = V}), we find E[p;] > E[p;41]. Hence
similar orderings have similar distributions

v
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Spatial Kernel Stick-Breaking Prior

Y(s) = 1(s) + x(s)" B + e(s)

N
n(s) ~ Fs(n) £ 3~ pi(s)de,
=1

i—1
pi(s) = Vi(s) [ J(1 - Vi(s))

Vi(s) = wi(s) Vi
V; ~ Beta(a, b)
0, H

W;(S) € [Oa 1]

» w;(s) can be, e.g. kernel function or
log(wi(s)/(1 — wi(s))) ~ GP
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Spatial Kernel Stick-Breaking Prior

TABLE 11.4

Examples of Kernel Functions and the Induced Functions y (s, s’), Where s = (s1,5), h1 =

Is1—sil4Is2—s51,ha = /(51 — 87)2 + (52 — 53)2, I () is the Indicator Function, and x* = max(x, 0)

K5

Name wi(s) Model for k1; and ki ~(s, ')
i ji Isi—s" 1\ T
Uniform H?:I I (\Sj —Vjil < %) K1i, K2i = A H?:l (1 _ %L)
Uniform TT5a 7 (s = vl ) k11, k2i ~Exp() exp(—h1/)
Exponential H?:l exp (—‘i%’l’_‘) K1i, K2i = A 0.25 [H?:] (1 + ‘5’_;51_‘>] exp (_th)
)2 2
Squarai exp- H?:l exp (_(‘s%ﬂ) K1i, K2i = )\2/2 0.5 exp (—%)
i
— 2
Squared exp.  [[}_; exp (— e ) «1i, 2i ~InvGa (%, %) 05/ (1+(%)?)
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