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Topics

I Spatial GLMs and GLMMs

I Gaussian-log-Gaussian (GLG) mixture modeling

I Bayesian Nonparametrics (stick breaking priors)
I Others (not discussed here)

I Spatial Deformation Method
I Copulas
I Transform data directly before modeling (e.g. Box-Cox)
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Spatial Generalized Linear Mixed Models (GLMMs):
Formulation

I [Y (si )|η,β], i = 1, ...,m is conditionally independent for any
location, si , with conditional mean E [Y (si )|η,β] = µ(si )

I g(µ) = Xβ + Hη + ε
I g(·) link function
I Xβ linear fixed effects
I Hη latent random effects (spatial process, typically Gaussian)
I ε ∼ N(0, σ2

εI ) site-specific random variation
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Spatial Generalized Linear Mixed Models (GLMMs):
Computation

I Likelihood not directly computable:

L(β,θ;Y) =

∫

Rn

n∏

i=1

fi (Y (si )|η,θ) dη

I Possible alternatives:
I EM (Zhang, 2002)
I Composite (pairwise) likelihood (e.g. Varin, Host, and Skare

2005)
I MCMC

I Langevin updates for η suggested (e.g. Diggle and Robeiro,
2007)

I If ε is included, one can use conjugate MVN Gibbs updates
for η if σε known or nearly known (e.g. Wikle 2002, Royle
and Wikle, 2005)

I geoRglm R package (Diggle and Ribeiro, 2007)
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Gaussian-log-Gaussian (GLG) mixture model

I Palacias and Steel (2006) suggest the model:

yi = x(si )
Tβ +

ηi√
λi

+ εi

I η ∼ N(0, σ2Cθ) Spatial process
I log(λ) ∼ N

(
−ν21, νCθ

)
mixing variables independent of η, ε

I ε iid mean zero variance τ 2 normal noise (“nugget”)
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Gaussian-log-Gaussian (GLG) mixture model

yi = x(si )
Tβ +

ηi√
λi

+ εi

P1: BINAYA KUMAR DASH
February 23, 2010 9:42 C7287 C7287˙C011

152 Handbook of Spatial Statistics

1 2 3 4
λ

1

2

3

4

Pd
f

FIGURE 11.1
Marginal probability density function of mixing variables λi for various values of ν. Solid line ν = 0.01, short
dashes: ν = 0.1, long dashes: ν = 1.

Thus, in the case without nugget effect (ω2 = 0), we see that if the distance between si and
s j tends to zero, the correlation between yi and yj tends to one, so that the mixing does
not induce a discontinuity at zero. It can also be shown (see Palacios and Steel, 2006) that
the smoothness of the process is not affected by the mixing, in the sense that without the
nugget effect the process Y(s) has exactly the same smoothness properties as η(s).

The tail behavior of the finite-dimensional distributions induced by the GLG process is
determined by the extra parameter ν. In particular, Palacios and Steel (2006) derive that the
kurtosis of the marginal distributions is given by kurt[yi ] = 3 exp(ν), again indicating that
large ν corresponds to heavy tails, and Gaussian tails are the limiting case as ν → 0.

Our chosen specification for mixing the spatially dependent process as in Equation (11.2)
requires a smooth λ(s) process, which means that observations with particularly small
values of λi will tend to cluster together. Thus, what we are identifying through small
values of λi are regions of the space where the observations tend to be relatively far away
from the estimated mean surface. Therefore, we can interpret the presence of relatively
small values of λi in terms of spatial heteroscedasticity, rather than the usual concept of
outlying observations. However, for convenience we will continue to call observations with
small λi “outliers.”

It may be useful to have an indication of which areas of the space require an inflated
variance. Indicating regions of the space where the Gaussian model fails to fit the data well
might suggest extensions to the underlying trend surface (such as missing covariates) that
could make a Gaussian model a better option. The distribution of λi is informative about
the outlying nature of observation i . Thus, Palacios and Steel (2006) propose to compute the
ratio between the posterior and the prior density functions for λi evaluated at λi = 1, i.e.,

Ri = p(λi |y)
p(λi )

|λi =1 . (11.5)

In fact, this ratio Ri is the so-called Savage–Dickey density ratio, which would be the Bayes
factor in favor of the model with λi = 1 (and all other elements of λ free) versus the model
with free λi (i.e., the full mixture model proposed here) if Cθ(∥si − s j∥) = 0 for all j ̸= i .
In this case, the Savage–Dickey density ratio is not the exact Bayes factor, but has to be
adjusted as in Verdinelli and Wasserman (1995). The precise adjustment in this case is ex-
plained in Palacios and Steel (2006). Bayes factors convey the relative support of the data
for one model versus another and immediately translate into posterior probabilities of rival
models since the posterior odds (the ratio of two posterior model probabilities) equals the
Bayes factor times the prior odds (the ratio of the prior model probabilities).

© 2010 by Taylor and Francis Group, LLC
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Gaussian-log-Gaussian (GLG) mixture model

yi = x(si )
Tβ +

ηi√
λi

+ εi

Nice properties:

I E [λi ] = 1

I Var (λi ) = exp {ν} − 1

I ν → 0⇒ λ→ 1⇒ yi → (Gaussian)

I Large ν ⇒ heavy-tailed, highly skewed distribution

I Easily computable correlation function

7



Stick Breaking Priors

In order to have nonparametric model in Bayesian setting we need
a prior over an infinite-dimensional model space:

Definition
A random probability distribution, F , has a stick-breaking prior if:

F
d
=

N∑

i=1

piδθi

where δz is a Dirac measure at z , pi = Vi
∏

j<i (1− Vj) where

V1, ...,VN−1
iid∼ Beta(ai , bi ), and θ1, ...,θN

iid∼ H for centering (aka
base) distribution H. Here, N could be infinite.
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Stick Breaking Priors

When N =∞, there are several well-known priors in this class:

I Dirichlet Process Prior (see Ferguson, 1973 and Sethuraman,
1994)

I The Pitman-Yor (or two-parameter Poisson-Dirichlet) process
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Generalized Spatial Dirichlet Process

I The main idea is to allow the θj ’s in our stick-breaking prior
to be spatially dependent (Duan, Guindani, and Gelfand 2007
and Gelfand, Guindani, and Petrone, 2007)

I Allow the surface selection to depend on location:

F (n) d
=
∞∑

i1=1

...

∞∑

in=1

pi1,...,inδθi1 ...δθin

for ij = i(sj) are the location indices and θij locations are
drawn from centering random field H. Weights pi1,...,in are
distributed independently from the locations on the infinite
unit simplex.

I Constraints on the weights allow for smooth (mean square
continuous) random probability measure

I Note: this requires replications in time
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Hybrid Dirichlet Mixture Models

I Petrone, Guindani, and Gelfand (2009) take previous model
further using species sampling prior, which is more general
than stick-breaking prior (the weights, Vi , are allowed to be
general). The model is:

yi |θi
ind∼ Nm(θi , σ

2Im),

θi |Fx1,...,xm
iid∼ Fx1,...,xm ,

Fx1,...,xm
d
=

k∑

j1=1

...

k∑

jm=1

p(j1, ..., jm)δθj1,1,...,θjm,m

where:
I p(j1, ..., jm) is proportion of (hybrid) species (θj1,1, ..., θjm,m) in

the population, and θj = (θj,1, ..., θj,m)
iid∼ H

I H typically Gaussian process
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Order-Based Dependent Dirichlet Processes (πDDPs)

I Griffon and Steel (2006)

I Unlike previous nonparametric Bayesian methods presented,
doesn’t require replication of spatial fields

I Define rankings of weights, V, via orderings, π(s)

I Since pi = Vi
∏

j<i (1− Vj), we find E [pi ] ≥ E [pi+1]. Hence
similar orderings have similar distributions
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Spatial Kernel Stick-Breaking Prior

Y (s) = η(s) + x(s)Tβ + ε(s)

η(s) ∼ Fs(η)
d
=

N∑

i=1

pi (s)δθi

pi (s) = Vi (s)
i−1∏

j=1

(1− Vj(s))

Vi (s) = wi (s)Vi

Vi ∼ Beta(a, b)

θi
iid∼ H

wi (s) ∈ [0, 1]

I wi (s) can be, e.g. kernel function or
log(wi (s)/(1− wi (s))) ∼ GP
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Spatial Kernel Stick-Breaking Prior
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generalized by Duan et al. (2007) to allow both the weights and locations to vary spatially.
However, we have seen that these models require replication of the spatial process. As
discussed in the previous section, Griffin and Steel (2006) propose a spatial Dirichlet model
that does not require replication. The latter model permutes the Vi based on spatial location,
allowing the occurrence of θi to be more or less likely in different regions of the spatial
domain. The nonparametric multivariate spatial model introduced by Reich and Fuentes
(2007) has multivariate normal priors for the locations θi . We call this prior process a
spatial kernel stick-breaking (SSB) prior. Similar to Griffin and Steel (2006), the weights pi
vary spatially. However, rather than random permutation of Vi , Reich and Fuentes (2007)
introduce a series of kernel functions to allow the masses to change with space. This results in
a flexible spatial model, as different kernel functions lead to different relationships between
the distributions at nearby locations. This model is similar to that of Dunson and Park
(2008), who use kernels to smooth the weights in the nonspatial setting. This model is
also computationally convenient because it avoids reversible jump MCMC steps and the
inversion of large matrices.

In this section, first, we introduce the SSB prior in the univariate setting, and then we
extend it to the multivariate case. Let Y(s), the observable value at site s = (s1, s2), be
modeled as

Y(s) = η(s) + x(s)Tβ + ϵ(s), (11.14)

where η(s) is a spatial random effect, x(s) is a vector of covariates for site s, β are the
regression parameters, and ϵ(s) i id∼ N(0, τ 2).

The spatial effects are assigned a random prior distribution, i.e., η(s) ∼ Fs(η). This
SSB modeling framework introduces models marginally, i.e., Fs(η) and Fs′ (η), rather than
jointly, i.e., Fs,s′ (η), as in the referenced work of Gelfand and colleagues (2005). The distri-
butions Fs(η) are smoothed spatially. Extending (11.10) to depend on s, the prior for Fs(η)
is the potentially infinite mixture

Fs(η) d=
N∑

i=1

pi (s)δθi , (11.15)

where pi (s) = Vi (s)
∏i−1

j=1(1−Vj (s)), and Vi (s) = wi (s)Vi . The distributions Fs(η) are related
through their dependence on the Vi and θi , which are given the priors Vi ∼ Beta(a, b) and
θi ∼ H, each independent across i . However, the distributions vary spatially according to
the functions wi (s), which are restricted to the interval [0, 1]. wi (s) is modeled using a kernel
function, but alternatively log(wi (s)/(1 − wi (s))) could be modeled as a spatial Gaussian

TABLE 11.4

Examples of Kernel Functions and the Induced Functions γ (s, s′), Where s = (s1, s2), h1 =
|s1−s ′

1|+|s2−s ′
2|, h2 =

√
(s1 − s ′

1)2 + (s2 − s ′
2)2, I (·) is the Indicator Function, and x+ = max(x, 0)

Name wi(s) Model for κ1i and κ2i γ(s, s′)

Uniform
∏2

j=1 I
(
|s j − ψ j i | <

κ j i
2

)
κ1i , κ2i ≡ λ

∏2
j=1

(
1 −

|s j −s′
j |

λ

)+

Uniform
∏2

j=1 I
(
|s j − ψ j i |

<κ j i
2

)
κ1i , κ2i ∼Exp(λ) exp(−h1/λ)

Exponential
∏2

j=1 exp
(

− |s j −ψ j i |
κ j i

)
κ1i , κ2i ≡ λ 0.25

[∏2
j=1

(
1 +

|s j −s′
j |

λ

)]
exp

(
− h1

λ

)

Squared exp.
∏2

j=1 exp

(
− (s j −ψ j i )2

κ2
j i

)
κ1i , κ2i ≡ λ2/2 0.5 exp

(
− h2

2
λ2

)

Squared exp.
∏2

j=1 exp

(
− (s j −ψ j i )2

κ2
j i

)
κ1i , κ2i ∼InvGa

(
3
2 , λ2

2

)
0.5/

(
1 + ( h2

λ )2
)
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