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Log-Gaussian Cox process
I A simple point process on a bounded region Ω ⊂ R2 is an

inhomogeneous Poisson process.

I Let the intensity surface across the region be the function λ(s).

I The number of points in region D ⊂ Ω follows a Poisson
distribution with mean Λ(D) =

∫
D
λ(s)ds.

I The point pattern Y depends on the intensity surface.

I If Z (s) = log λ(s) is a Gaussian process, then the point process
is known as a doubly-stochastic Poisson process or as a
log-Gaussian Cox process.

I The likelihood is:

π(y | λ) = exp

{
|Ω| −

∫
Ω

λ(s)ds

}∏
si∈y

λ(si)
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Computation on a grid

I The most common inference method is to set up a regular
lattice over the bounded region of interest, Ω.

I Let the number of points in cell sij be Nij .

I Conditional on Z (s), the Nij can be considered independent
Poisson random variables.

I Assume a constant value of Z (sij) = zij within each grid cell,
with Λij ≈ |sij | exp(zij).

I Can assume z is multivariate normal with covariance function
C (i , j), but is computationally costly.

I Can use GMRF approximation and INLA instead.
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Issues with grid approach

I Grid approximation converges to true solution as the size of the
cells decreases to zero

I Increasing number of grid cells increases computational cost

I Lattice used to approximate the latent Gaussian field and used
to approximate locations of points

I Binning the points is the main source of error

I Need more grid cells to accurately approximate the likelihood
than needed to estimate the field

I Solution: construct a continuous approximation to the field in
way that is still computationally efficient
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Mátern SPDE

A Gaussian process Z (s) with Mátern covariance function can be
respresented as a stochastic differential equation

τ
(
κ2 −∆

)α/2
Z (s) = W (s)

where

I τ is a scaling parameter

I κ is a range parameter

I ∆ =
∑d

i=1 ∂
2/∂s2

i is the Laplacian operator

I α = ν + d/2, where ν is a smoothing parameter and d is the
dimension (2 here)

I W (s) is spatial white noise
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Basis function representations

I A GP Z (s) can represented over continuous time using a finite
basis expansion:

Z (s) =
n∑

i=1

ziφi(s),

where z = {z1, . . . zn} is a multivariate Gaussian vector and
{φi(s)}ni=1 is a set of linearly independent deterministic basis
functions.

I This approach has been used in various ways, including the
Karhunen-Loeve decomposition, process convolutions, fixed-rank
kriging, and SPDE approximations.
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GMRF solutions to SPDE

Using piecewise-linear basis functions as test functions, the set of
weak solutions to the SPDE for α = 2 and j = 1, . . . n is∫

Ω

φj(s)τ
(
κ2 −∆

)
Z (s)ds

d
=

∫
Ω

φj(s)W (s)ds

After substituting the basis expansion for Z (s) we get

τ
n∑

j=1

zj

∫
Ω

(
κ2 −∆

)
φj(s)φj(s)ds

d
=

∫
Ω

φj(s)W (s)ds
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GMRF solutions to SPDE

These solutions can be represented in matrix notation as (assuming
Neumann boundary conditions):

τ(κ2C + G )z d
= w

where w ∼ N(0, C̃ ) and C̃i ,j =
∫

Ω
φi(s)φj(s)ds. It follows that

z ∼ N(0,Q−1)

where Q = τ 2(κ2C + G )C−1(κ2C + G ) and the elements of G and
the sparse approximation of C̃ are

Ci ,i =

∫
Ω

φi(s)ds and Gi ,j =

∫
Ω

∇φi(s)∇φj(s)ds
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GMRF solutions to SPDE

The benefits of this formulation are:

I Q is sparse so can use sparse matrix operations for GMRF

I Z (s) is specified over continuous space

I Can use INLA for inference
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Likelihood

I Likelihood for inhomogeneous point process

π(Y | λ) = exp

{
|Ω| −

∫
Ω

λ(s)ds

}∏
si∈Y

λ(si)

I Associated log-likelihood

log π(y | Z ) = |Ω| −
∫

Ω

exp {Z (s)} ds +
N∑
i=1

Z (si)
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Likelihood approximation

Using a numerical integration rule
∫

Ω
f (s)ds ≈

∑p
i=1 α̃i f (s̃i) for fixed

nodes {s̃i}pi=1 and weights {α̃i}pi=1, we can construct an approximate
log-likelihood:

log π(y |z) ≈ C −
p∑

i=1

α̃i exp

{
n∑

j=1

zjφj(s̃i)

}
+

N∑
i=1

n∑
j=1

zjφj(si)

where C is a constant and Z (s) is replaced by the basis expansion.
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Likelihood approximation

We can write the log-likelihood approximation in matrix notation as

log π(y |z) ≈ C − α̃T exp {A1z}+ 1TA2z

where

I [A1]ij = φj(s̃i) is matrix of basis functions evaluated at
integration nodes

I [A2]ij = φj(si) is matrix of basis functions evaluated at
observation locations
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Likelihood approximation

Let

I log η = (zTAT
1 , zTAT

2 )T

I α = (α̃, 0T
N×1)T

I y = (0T
p×1, 1

T
N×1)T

The likelihood can then be re-written in Poisson form:

π(y | z) ≈ C

N+p∏
i=1

ηyii exp(−αiηi)
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Data example 7.2

I Locations of 4,294 trees on 50 ha plot in rainforest.

I Intensity related to phosphorus concentration

I Model 1: SPDE LGCP
I Z (s) = µ+ βP(s) + x(s)
I κ = 0.0014 and log(τ) ∼ N(0, 1000)
I How many basis functions?

I Model 2: Lattice LGCP
I z = µ1 + βP + x
I x ∼ N(0, τ−1Q−1) as intrinsic RW2, and τ ∼ Ga(1, 10−5)
I How many grid cells?

I Both models fit with INLA
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Data example 7.3

I Subarea with reduced sampling effort

I λ(s) = S(s) exp {Z (s)}, where S(s) is function for sampling
effort

I Make S(s) = 0 in rectangle, S(s) = 1 elsewhere

I This results in no contribution to likelihood - make mesh coarse
there

I Compared to complete simulated data

I Also compared two meshes – uniform and with coarse in
rectangle.

I little difference in resulting posterior marginals
I coarse mesh resulted in 35% reduction in computation time

17 / 24



18 / 24



19 / 24



Data example 7.4

I Point process over entire ocean

I Motivated by model of risk of freak waves

I Expect freak wave height more variable near coast

I Used Neumann boundary conditions – doubles variance near
boundaries

I Simulated field with 913 points
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Some tutorial links

I http://www.r-inla.org/examples/tutorials

I https:

//haakonbakka.bitbucket.io/organisedtopics.html

I http:

//www.flutterbys.com.au/stats/tut/tut12.13.html
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