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Log-Gaussian Cox process

» A simple point process on a bounded region Q2 C R? is an
inhomogeneous Poisson process.

» Let the intensity surface across the region be the function A(s).

» The number of points in region D C € follows a Poisson
distribution with mean A(D) = [, A(s)ds

» The point pattern Y depends on the intensity surface.

» If Z(s) = log A(s) is a Gaussian process, then the point process
is known as a doubly-stochastic Poisson process or as a
log-Gaussian Cox process.

» The likelihood is:

m(y | )\):exp{|Q\ —/ ds}H)\ s)

Sicy
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Computation on a grid

» The most common inference method is to set up a regular
lattice over the bounded region of interest, Q.

» Let the number of points in cell s; be Nj;.

» Conditional on Z(s), the N can be considered independent
Poisson random variables.

» Assume a constant value of Z(s;) = z; within each grid cell,
with Aj = |s;| exp(z;).

» Can assume z is multivariate normal with covariance function
C(/,J), but is computationally costly.

» Can use GMRF approximation and INLA instead.
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Issues with grid approach

» Grid approximation converges to true solution as the size of the
cells decreases to zero

» Increasing number of grid cells increases computational cost

» Lattice used to approximate the latent Gaussian field and used
to approximate locations of points

» Binning the points is the main source of error

» Need more grid cells to accurately approximate the likelihood
than needed to estimate the field

» Solution: construct a continuous approximation to the field in
way that is still computationally efficient
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Matern SPDE

A Gaussian process Z(s) with Matern covariance function can be
respresented as a stochastic differential equation

7 (K2~ 08)* Z(s) = W(s)

where
» 7T is a scaling parameter
» K iS a range parameter
» A=35"9 92/0s? is the Laplacian operator

a = v+ d/2, where v is a smoothing parameter and d is the
dimension (2 here)

v

v

W(s) is spatial white noise
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Basis function representations

» A GP Z(s) can represented over continuous time using a finite
basis expansion:

Z(s)= ZZ@:‘(S),

where z = {z,...z,} is a multivariate Gaussian vector and
{¢i(s)}"_; is a set of linearly independent deterministic basis
functions.

» This approach has been used in various ways, including the
Karhunen-Loeve decomposition, process convolutions, fixed-rank
kriging, and SPDE approximations.
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GMRF solutions to SPDE

Using piecewise-linear basis functions as test functions, the set of
weak solutions to the SPDE fora =2and j=1,...nis

/Qﬁbj(S)T (k* — A) Z(s)ds 4 /ngﬁj(s)W s)ds

After substituting the basis expansion for Z(s) we get

TZZJ/ 8) (5)oy(s)ds * [ (5 W(s)ds
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GMRF solutions to SPDE

These solutions can be represented in matrix notation as (assuming
Neumann boundary conditions):

7(k*°C + G)z =
where w ~ N(0, C) and C;; = [, ¢i(s)¢;(s)ds. It follows that
N0, Q")

where Q = 7%(k*C + G)C ' (k2C + G) and the elements of G and
the sparse approximation of C are

C.i /gf), )ds and G; /qu;(s)ngj(s)ds
Q

7/ 2



GMRF solutions to SPDE

The benefits of this formulation are:

» @ is sparse so can use sparse matrix operations for GMRF
» Z(s) is specified over continuous space
» Can use INLA for inference
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Likelihood

» Likelihood for inhomogeneous point process

7T(Y|)\):exp{|Q| / }H/\S,

» Associated log-likelihood

og(y | Z) = 9] — /Qexp{Z(s)}ds—I—ZZ(s,-)

i=1
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Likelihood approximation

Using a numerical integration rule [, f(s)ds ~ Y 7, a;f(§;) for fixed
nodes {5 }7_, and weights {d&;}?_,, we can construct an approximate
log-likelihood:

N n
logm(y|z) = C — Za eXP{Z%@ 5i }+Zzzj¢j(5i)

i=1 j=1

where C is a constant and Z(s) is replaced by the basis expansion.
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Likelihood approximation

We can write the log-likelihood approximation in matrix notation as
log(y|z) = C — & exp {A1z} + 17T A,z

where

» [A1]j = ¢,(5;) is matrix of basis functions evaluated at
integration nodes

» [As]ij = ¢)(si) is matrix of basis functions evaluated at
observation locations
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Likelihood approximation

Let
> logn = (2"A[. 2T A})7
> = (&’OIL—XI)T

>y = (Ol;rxlvlﬁxl)—r

The likelihood can then be re-written in Poisson form:

N+p

w(y | 2) = C ] nt' exp(—aimy)

i=1
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Fig. 1. The dual mesh (black) is constructed by joining the

centroids of the primal triangular mesh (grey). The volumes

of these dual cells define the weights of an integration scheme
based at the nodes of the primal mesh.
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Data example 7.2

v

Locations of 4,294 trees on 50 ha plot in rainforest.

v

Intensity related to phosphorus concentration
Model 1: SPDE LGCP

> Z(s) = p+ BP(s) + x(s)

» k= 0.0014 and log(7) ~ N(0,1000)

» How many basis functions?

Model 2: Lattice LGCP

» z=pul+ 8P+ x
» x ~ N(0,771Q™1) as intrinsic RW2, and 7 ~ Ga(1,107)
» How many grid cells?

Both models fit with INLA

v

v

v
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Fig. 2. The effect of soil potassium levels on the location of Protium tenuifolium: (a) locations of

Protium tenuifolium; (b) the posterior covariate effect of phosphorus obtained using the standard
lattice method (dashed) and the stochastic partial differential equation approach (solid).
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Fig. 3. Estimated spatial effects for Protium tenuifolium: (a) using a standard lattice point process model; (b) using
the stochastic partial differential equation approach.
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Data example 7.3

» Subarea with reduced sampling effort

> A(s) = S(s)exp{Z(s)}, where S(s) is function for sampling
effort

» Make S(s) = 0 in rectangle, S(s) = 1 elsewhere

» This results in no contribution to likelihood - make mesh coarse
there
» Compared to complete simulated data

» Also compared two meshes — uniform and with coarse in
rectangle.

» little difference in resulting posterior marginals
» coarse mesh resulted in 35% reduction in computation time
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Fig. 4. Simulated data with a hole in the sampling effort: (a) an inner rectangle delineating the area in which there
was no sampling, with plus signs representing the points that were missed due to incomplete sampling; (b) a mesh
that takes into account the lack of sampling effort in the rectangular region.
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Fig. 5. The posterior mean of the spatial effect for variable sampling effort (see § 7-3): (a) using the complete
simulated point pattern; (b) using the incomplete, partially observed point pattern. The large-scale features of the

two fields are similar in areas in which the point pattern was sampled.
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Data example 7.4

v

Point process over entire ocean

v

Motivated by model of risk of freak waves

v

Expect freak wave height more variable near coast

v

Used Neumann boundary conditions — doubles variance near
boundaries

Simulated field with 913 points

v
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Fig. 6. (a) A simulated log-Gaussian Cox process over the oceans. (b) A mesh that covers the oceans.
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Fig. 7. Inference for a point process over the oceans: (a) true surface from the latent Gaussian random field used to
generate the sample in Fig. 6; (b) posterior mean of the latent spatial effect. Note that the large-scale behaviour is
the same in both panels.
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Fig. 8. Inference for a point process over the oceans: (a) the pointwise posterior standard deviation for the log risk
surface; (b) the posterior risk map pr{log A(s) > 5:5| y}.
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Some tutorial links

» http://www.r-inla.org/examples/tutorials

» https:
//haakonbakka.bitbucket.io/organisedtopics.html

» http:
//www.flutterbys.com.au/stats/tut/tut12.13.html
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