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Motivation

I Underlying latent field may not be Gaussian

I Typical approach is to transform a Gaussian field

I Transformations do not allow much flexibility

I Goal to provide framework for modelling non-Gaussian fields
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Gaussian Matérn fields

I Matérn covariance function:

C (h) =
21−νφ2

(4π)
d
2 Γ(ν + d

2
)κ2ν

(κ‖h‖)νKν(κ‖h‖)

I Here ‖h‖ = ‖s− s′‖ is a Euclidean distance, d is the dimension
of the domain, ν is a shape parameter, κ is a scale parameter,
φ2 is a variance parameter, and K is a modified Bessel function
of the second kind.

I Stationary and isotropic

I Flexible and widely used
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Convolution approach for Gaussian Matérn fields
I An alternative way to express a Gaussian field on Rd is as a

process convolution

X (s) =

∫
Rd

k(s,u)B(du),

I where k is a deterministic kernel function and B is a Brownian
sheet (Higdon, 2002).

I The covariance function for X is C (h) =
∫
k(u− h)k(u)du.

I The covariance function C , the spectrum S , and the kernel k are
related through

(2π)d |F(k)|2 = F(C ) = S ,

I where F(·) denotes the Fourier transform
I The symmetric non-negative kernel for the Matérn field is a

Matérn covariance function with parameters νk = ν/2− d/4,
φk =

√
φ, and κk = κ
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SPDE approach for Gaussian fields

I A Gaussian Matérn field X (s) is the solution to the following
stochastic partial differential equation (SPDE):(

κ2 −∆
)α

2 X (s) = φW(s)

I where W(s) is a spatial white noise process with unit variance, φ
is a variance parameter, α = ν + d/2, and

∆ =
d∑

i=1

∂2

∂s2i

is the Laplacian operator.
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SPDE approach for Gaussian fields

I Define the inner product 〈f , g〉 =
∫
f (u)g(u)du

I Then the stochastic weak solution of the SPDE is found by
requiring{
〈ψj , (κ

2 −∆)α/2X 〉, j = 1, . . . ,m
} d

= {〈ψj ,W〉, j = 1, . . . ,m}

for every finite set of test functions {ψj(u), j = 1, . . . ,m}
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SPDE approach for Gaussian fields

I Let Ω be the space of all possible solutions to the SPDE.

I Let {ϕi ; i = 1, . . . , n} be a set of basis functions for some
subspace Ω̃ ⊂ Ω.

I Then a finite element representation of the solution is
constructed as

X̃ (s) =
n∑

i=1

wiϕi(s)

where wi are a set of stochastic weights.

I The basis functions and weights are associated with discrete
locations i on some spatial grid.
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SPDE approach for Gaussian fields

I The selected basis functions are piecewise linear functions.

I Let s1 < s2 < · · · < sn be a set of discretization points.

I For a one-dimensional process, a set of basis functions is given by

ϕi(s) =


0, s < si−1
s−si−1

hi−1
, si−1 < s < si

1− s−si
hi
, si < s < si+1

0, si+1 < s

7 / 26



SPDE approach for Gaussian fields

I Define n × n matrices C, G, and K with entries
I Cij = 〈ϕi , ϕj〉
I Gij = 〈∇ϕi ,∇ϕj〉
I (Kκ2)ij = κ2Cij + Gij

I Let Qα,κ2 be the precision matrix for the Gaussian weights w for
α = 1, 2, . . . .

I Then the finite dimensional representations of the solutions have
precisions:

I Q1,κ2 = Kκ2

I Q2,κ2 = Kκ2C
−1Kκ2

I Qα,κ2 = Kκ2C
−1Qα−2,κ2C

−1Kκ2 , for α = 3, 4, . . . .
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SPDE approach for Gaussian fields

I The dense matrix C−1 makes the precision matrices dense.

I If we approximate C with a diagonal matrix C̃, where
C̃ii = 〈ϕi , 1〉, then the weights w follow a GMRF (computational
benefits).
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Connection between SPDE and convolution

I The connection between the SPDE and the convolution is
through Green’s function of the differential operator in the SPDE

Gα(s, t) =
21−α−d

2

(4π)
d
2 Γ(α

2
)κα−d

(κ‖s− t‖)
α−d
2 Kα−d

2
(κ‖s− t‖)

I which serves as the kernel in the convolution
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SPDE approach for non-Gaussian fields

I The SPDE for a non-Gaussian Matérn field is(
κ2 −∆

)α
2 X (s) = Ṁ

where Ṁ is non-Gaussian noise process.

I We restrict focus to the case where M(s) is a type G Lévy
process.

I Note that for the models we investigate, Ṁ = φ(s)W(s), where
φ(s) follows a distribution.
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Lévy processes

I A type G Lévy process has increments that can be written as a
scale mixture of Gaussian variables V 1/2Z .

I V is a non-negative and infinitely divisible random variable, and
Z is standard Gaussian.

I For infinitely divisible V , there exists a non-decreasing Lévy
process V (s) with increments distributed the same as V .

I The generalized hyperbolic distributions are a subtype of type G
Lévy process.

I We restrict class to those closed under convolution so that Vi

has known distribution for any increment area.

I This restricts to the normal inverse Gaussian (NIG) and
gerneralized asymmetric Laplace (GAL) distributions.
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SPDE approach for non-Gaussian fields

I We use the same type of finite element representation with basis
functions and stochastic weights as Gaussian case.

I The distribution of the stochastic weights conditional on the
variance process V is

w | V ∼ N
(
K−1α m, K−1α ΣK−1α

)
I Here K−1α = C (C−1K)

α/2

I The matrices K C, and Σ have elements
I Cij = 〈ϕi , ϕj〉
I Kij = κ2〈ϕi , ϕj〉+ 〈∇ϕi ,∇ϕj〉
I Σij =

∫
ϕi (s)ϕj(s)V (ds)

I and mi =
∫
ϕi(s)V (ds)

13 / 26



SPDE approach for non-Gaussian fields

I For GAL and NIG distributions m and Σ can be written as

mi = γτhi + µVi

Σ = diag(V1, . . . ,Vn)

I hi =
∫
ϕi(s)ds is the area associated with ϕi .

I Vi =
∫
hi
V (ds)

I For GAL, V (s) is gamma process: Vi ∼ Γ(hiτ, 1).
I For NIG, V (s) is inverse-Gaussian process: Vi ∼ IG(2, (hiν)2).
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Sampling from a GAL process

I Want to sample process at locations s = (s1, s2, . . . , sn). Let Φ
be a matrix with elements Φij = ϕj(si).

1. Generate two independent random vectors Γ and Z, where
Γi ∼ Γ(τhi , 1) and Zi ∼ N(0, 1)

2. Let Λ = γτh + µΓ + σdiag(
√

Γ)Z and calculate w = C−1Λ.

3. X = ΦK−1α w is now a sample of the random field at locations s.
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from Bolin 2014
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from Bolin 2014
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from Bolin 2014
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A geostatistical model

I Assume field X (s) is observed at some locations s1, . . . , sN
generating observations y1, . . . , yN .

I Assume X (s) is of the form

X (s) =
nx∑
i=1

Bi(s)βi + ξ(s)

where ξ(s) is an SPDE field, and {B1, . . . ,Bnx} are known
covariates.
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A geostatistical model

I Using the finite element representation, the hierarchical model
expressed in terms of the weights w and the basis expansion for
ξ(s) is

y = Bβ + Aw + ε

w = K−1α

(
τaγ + Vµ + σ

√
V ◦ Z

)
I Here A is N × n with elements Aji = ϕi(sj)

I ε is a vector of iid N(0, σ2
ε ) variables

I a is vector with elements ai = hi =
∫
ϕi(s)ds

I V contains independent variables Vi

I Z is iid standard Gaussian variables
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