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Notation

I We’re going to be looking at spatio-temporal random
processes of the form

{Y (s, t)|s ∈ Ds , t ∈ Dt}

where Ds , Dt are index sets for space and time respectively.

I Want to model current value Y (s, t), conditional on past
values and current spatially close values, i.e.

Y (s, t)|{Y (x , r)|x ∈ Ds , r < t} ∪ {Y (x , t)|x ∈ Ds}



Approaches to Spatio-Temporal Modelling

I Two approaches to space-time models that Cressie and Wikle
emphasize: descriptive and dynamical

I When there’s knowledge of process dynamics, you should use
that to guide your modeling (this is the approach in chapter 7
that Johnny covered)

I When there’s no knowledge of process dynamics,
spatio-temporal covariance functions are compact and
informative summaries of space-time processes, and can be
used as building blocks for space-time models (e.g.
kriging/Gaussian process regression)

I Gaussian processes and other related methods describe
spatio-temporal variability, while methods motivated by
dynamical systems explain spatio-temporal variability



Some Motivation

I Write out your space-time process as

Y (s, t) = µ(s, t) + β(s) + γ(t) + κ(s, t) + δ(s, t)

where µ is the deterministic mean, and β, γ, κ, δ are all zero
mean random effects

I Difference between κ and δ is that they’re supposed to
capture large and small scale spatial temporal variability
respectively. δ assumed to be white noise

I All of the random effects have their own covariance functions

I Book describes classic versions of this model, where
assumptions are made so that the spatial and temporal
aspects are handled separately, in order to get covariance
functions for Y (s, t) that are manageable



Definition of Covariance Functions

Let f : (Ds × Dt)× (Ds × Dt)→ R
I f corresponds to a spatio-temporal covariance function if it’s

positive semi-definite, that is if the gram matrix generated by
f and a finite number of points in Ds × Dt is positive
semi-definite

I Most covariance functions that you’ll work with are positive
definite



Stationarity of Covariance Functions

I A spatio-temporal covariance function is stationary if it can be
written for any s, x ∈ Ds and t, r ∈ Dt as

f ((s, t), (x , r)) = C (s − x , t − r)

I So it only depends on the spatial and temporal lags h and τ

I For fixed τ , C (h, τ) is a stationary spatial covariance function

I for fixed h, C (h, τ) is a stationary temporal covariance
function

I Possible to define a covariance function that’s stationary in
only space or only time

I Can define the stationary spatio-temporal correlation function
as

ρ(h, τ) = C (h, τ)/C (0, 0)



Separability

I A covariance function is separable, if it can be written for any
s, x ∈ Ds and t, r ∈ Dt as

f ((s, t), (x , r)) = C s(s, x)C t(t, r)

I When C s ,C t are both stationary, this reduces to

f ((s, t), (x , r)) = C s(s − x)C t(t − r)

I We can then visually test separability by comparing the
contours of C (h, τ) and C (h, 0)× C (0, τ), or alternatively the
contours of ρ(h, τ) and ρ(h, 0)× ρ(0, τ)



Separability

(b) shows a correlation function ρ(h, τ) and (a) shows
ρ(h, 0)× ρ(0, τ). They’re not the same, so C (h, τ) is non-separable



Full Symmetry

I A generalization of separability is full symmetry, which occurs
if a covariance function can be written for any s, x ∈ Ds and
t, r ∈ Dt as

f ((s, t), (x , r)) = f ((s, r), (x , t))

I Full symmetry implies separability, but separability doesn’t
imply full symmetry

I Covariance functions derived from dynamical systems aren’t
usually separable or fully symmetric. Both conditions are
strong, and usually imply regularity conditions that aren’t
actually met in practice



Separability and Full Symmetry
Three realizations from Gaussian processes with non-separable,
fully symmetric, and separable covariance matricies. Which is
which?



Separability and Full Symmetry

I Easy to diagnose separability from covariance functions

I Hard to diagnose separability from realizations of processes
with certain covariance functions



Spectral Representations

I By Bochner’s Theorem, we can represent a stationary
covariance function in terms of a non-negative function
f (ω, ξ), called the spectral density:

C (h, τ) =

∫ ∫
e−ih

Tω−iτξf (ω, ξ)dωdξ

I Equivalently, a non-negative function f (ω, ξ) can be
represented in terms of a positive semi-definite function
C (h, τ):

f (ω, ξ) = (2π)−(d+1)

∫ ∫
e−ih

Tω−iτξC (h, τ)dhdτ

I Can recognize these two representations as an inverse Fourier
transform and a Fourier transform respectively



Spectral Representations

I These representations give us two new ways to create
covariance functions

I Verifying positive semi-definiteness of a function is hard. If we
have a potential covariance function in mind, you can find it’s
spectral density and verify that it’s non-negative

I Alternatively, you can start wish a non-negative function
f (ω, ξ) and use the induced positive semi-definite function as
a covariance function

I Covariance functions induced by non-negative functions are
usually going to be non-separable!



Spatio-Temporal Kriging (Gaussian Process Regression)

I Suppose we have observed data Z (si , tij), where
j ∈ {1, · · · ,Ti} and i ∈ {1, · · · ,m}

I Assume the model Z (si , tij) = Y (si , tij) + ε(si , tij), where ε is
independent of Y , representing i.i.d. mean zero and variance
σ2ε measurement error, and Y is the latent spatio-temporal
process

I Goal is to predict Y (s0, t0) for unobserved s0, t0



Spatio-Temporal Kriging (Gaussian Process Regression)

I Assume that Y ∼ GP(µ, f ) where µ is a known mean function
and f is a covariance function with no unknown parameters

I Assume that ε ∼ Norm(0, σ2ε)

I Can write

Z i = [Z (si , tij)|j ∈ {1, · · · ,Ti}]T ,

Z = [(Z 1)T · · · (Zm)T ]T ,

µZ = [µ(si , tij)|j ∈ {1, · · · ,Ti}, i ∈ {1, · · · ,m}]T



Spatio-Temporal Kriging (Gaussian Process Regression)

I Let Cov(Z ) = f (Z ,Z ) + σ2ε I ,
Var(Y (s0, t0)) = f (Y (s0, t0),Y (s0, t0)), and
C0 = Cov(Y (s0, t0),Z ) = f (Y (s0, t0),Z )

I The joint of the observed and unobserved data is[
Y (s0, t0)

Z

]
∼ Norm

([
µ(s0, t0)
µZ

]
,

[
Var(Y (s0, t0)) CT

0

C0 Cov(Z )

])
I Through standard properties of the multivariate Gaussian, the

posterior predictive distributions is

Y (s0, t0)|Z ∼ Norm(µpost ,Σpost),

where µpost = µ(s0, t0) + CT
0 Cov(Z )−1(Z − µZ ) and

Σpost = Var(Y (s0, t0))− CT
0 Cov(Z )−1C0.



Spatio-Temporal Kriging (Gaussian Process Regression)

I Can generalize by placing prior on σ2ε , covariance function
parameters, etc.

I There are no restrictions on f , can be separable,
non-separable, stationary, non-stationary, etc.

I However, have to compute the inverse of the gram matrix,
which is of the order O((

∑m
i=1 Ti )

3) in general. Separability
brings this cost down since gram matrix will have Kronecker
product structure



Spatio-Temporal Kriging (Gaussian Process Regression)
Example of kriging on realization of stationary Gaussian process,
with varying sample sizes (64, 48, 48)



Spatio-Temporal Point Processes

(Going to be changing notation slightly for point processes)

I A spatio-temporal point process is a stochastic counting
process on a bounded subset Ds,t of Rd × R

I Usually we let Ds,t = Dt × [0,T ] where T is the largest
observed time

I For A ⊂ Ds,t , we let Z (A) be the number of events in A. So
{Z (A)|A ⊂ Ds,t} completely characterizes the process



Spatio-Temporal Point Processes

Some examples:

I Homogeneous Poisson Process: Given a constant intensity λ0,
Z (A) ∼ Pois(λ0|A|), where |A| is the volume of A

I Inhomogeneous Poisson Process: Given intensity function
λ(s, t), Z (A) ∼ Pois(

∫
A λ(s, t)dsdt) (so the homogeneous PP

is a special case)



Spatio-Temporal Point Processes
If we have an inhomogeneous Poisson process, we can write down
the likelihood using a conditonal intensity function

I Suppose we have the history of the counting process up to
time t, denoted by Ht . Then we can define the conditional
intensity of a process as

ψ(s, t|θ) = lim
|ds|,dt→0

E(Z (ds, dt)|Ht)

|ds||dt|
where θ are any parameters governing the process

I Writing the events of Z be written as
{(si , ti )|i ∈ {1, · · · ,N}}, where N = Z (Ds,t), we can then
write the likelihood as

L(θ|Z ) ∝
N∏
i=1

ψ(s, t|θ) exp

[∫
Ds,t

ψ(s, t|θ)dsdt

]
I Evaluating the integral in the likelihood can be tough, and the

condtional intensity can be hard to interpret in actual data
settings



Spatio-Temporal Point Processes

I Can generalize the inhomogenous Poisson process in a
hierarchical fashion, by letting the intensity function be a
stochastic process

I This results in a Cox process in general

I If you let Y (s, t) ∼ GP, and define the intensity function as
λ(s, t) = exp[Y (s, t)], you arrive at a log Gaussian Cox
process
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