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Over the last decade, convolution-based models for spddit@ have increased in popularity as
a result of their flexibility in modeling spatial dependerasel their ability to accommodate large
datasets. The modeling flexibility is due to the framework®ving-average construction that guar-
antees a validi(e., non-negative definite) spatial covariance function. Tasstructive approach
to spatial modeling has been used (1) to provide an altemttdithe standard classes of parametric
variogram/covariance functions commonly used in geastesi; (2) to specify Gaussian-process
models with nonstationary and anisotropic covariancetions; and (3) to create non-Gaussian
classes of models for spatial data. Beyond the flexible ratficonvolution-based models, com-
putational challenges associated with modeling largesgtdéacan be alleviated in part through
dimension reduction, where the dimension of the convolvedgss is less than the dimension of
the spatial data. In this paper, we review various types n¥clution-based models for spatial data
and point out directions for future research.

We consider models for continuously indexed spatia.,( geostatistical) data, and |&d =
(Z(s1),...,7Z(s,)) be ann x 1 vector of observations associated with known locati¢as :
i=1,...,n} C D C R% Using the observationg, we wish to make inference on an underlying
processy (-) that, when perturbed by random noise, yields the observgtiocessZ(-). Here we
assume that for alk € D, Z(s) = Y (s) + ¢(s), where the noise process) has mean zero,
varianceo?, and is independent across space, and the procEgseande(-) are independent. To
simplify our discussion of convolution-based models faatsgd data, we modify the model speci-
fication above by taking the procesg-) to have mean zero and decomposifng) as follows:

Z(s)=pu(s)+Y(s)+e(s), seD.
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The goal is then to use the da#ato infer the unknown parameters in the mean functign
and the covariance structure of the spatially dependerttesgY (). In this paper, we consider
convolution-based models fof(-).

In the traditional geostatistical setting.d., Cressie, 1993), the covariance function Yof-),
Cy(s1,82) = coU(Y (s1),Y(s2)), defined for alls,, s, € D, is usually assumed to belong to a
parametric class of covariance functiofG")(-, -:0) : 6 € ©}, where for alld € ©, CP)(-,-;0)

is a valid covariance function.é., non-negative definite). For a stationary covariance fongive
denoteCy (sy, s5) = CY(h), whereh = s; — s,. Then Bochner's Theorem states that

CO(h) = / ¢ p(de),
R4
whereF is a nonnegative symmetric measureRsh The process’ (-) can also be written as

Y(s) = / 'SV (dw),
R4
whereV/ () is a process with independent increments and
E[|V(dw)[’] = F(dw).

Now assume thalt (-) is Gaussian, and write
Y(s) :/ k(s, u)W(du), s € D, (1)
R4

wherek(-, -) is a square-integrablé.¢., [ £*(s,u) du < M < co) kernel function andV(-) is d-
dimensional Brownian motiore(., Yaglom, 1987). We can replad€|-) with a general process
V(-) whose increments are independent, have mean zero, and hagevéiriance proportional
to the volume of the increment. Due to the independent inergsofV/(-), it follows that the
covariance function o¥’(-) is indirectly implied through the choice of the kernel functk(-, -).
That is,

Cy(s1,82) = / k(s1,u)k(s2,u)du,
Rd
where, without loss of generalityy (V' (du)?) = du. Then, for any finite number and any real

numbers{a; : i =1,...,k},

k kK k kK k

ZZaiajCy(si, Sj) = ZZaiaj/ ]C(SZ‘,’U,V{Z(S]',’U,)d’U, = / (Z aik(si7u))2du Z 0.

i=1 j=1 i=1 j=1 R4 RE 5y

This is precisely the required non-negative-definitenesslition, and hencé€'y (-, -) is a valid
covariance function. This constructive approach to spewfa Gaussian process was suggested
by Matern (1986) and Tlebaux and Pedder (1987) and has been used to develop classmiais
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for spatial data that are referred to as spatial moving @es@SMA) or process convolutions; we

refer to this general class of spatial modelscasvol ution-based to emphasize its origins and its

generality. In virtually all that is to follow, we make the Gssian assumption (that is, the statistical
models are based on the representatiol 0 given in (1)), although this assumption is mostly
not needed.

Rather than estimating parameters in the covariance famgdtiis common in geostatistics to work
with the variogram function. Letting = s; — s, € R¢, the variogram o’ (-) at lagh is defined
to be

29y (h) =var[Y(s1) = Y(s2)], s1,82€D,

provided that the right-hand side is a functiontof= s; — s, (which is true ifY'(-) is intrinsically
stationary). Suppose we consider a special case of (1) veh@russian process is constructed as

Y(s) = /Rd k(s — w)W(du),s € D, 2)

wherek?(-) is a kernel function irR?. In this situation, the variogram can written as a functién o
the kernelk’(-), as follows:

2y (h) = /R (K(w) — K(u — h))? du. 3)

Further, the covariance function af(-) is stationary ite, C%(h) = Cy(sy, s2), whereh =
s1 — S3), Since

CY.(h) = /Rd E'(u)k’(uw — h) du . 4)

In this case, we can relate the ker{-) and the covariance functia@.(-) using the convolution
theorem for the Fourier transform, which states that therieowransform of the convolution of
two functions is proportional to the product of the Fourianisforms of each individual function.
Therefore, if we take the square root of the Fourier tramsfof C?.(-), and then we take its inverse
Fourier transform, we obtain a function that is proportiotwathe kernelk’(-) (see Kern, 2000,
for details on and examples of this result). Thus, dependmthe assumptions made about the
processY (-), expressions (1) - (2) can be used to motivate a convolliased representation of
the covariance function df (). This is a powerful approach due to the flexibility in the cteoof
the kernelk(-, -) or k°(-).

Frequently, convolution-based models are implementengusiscretized versions of (1) - (2). To
illustrate this in the most general case (Eg. (1)), we defin@s;) : i = 1,...,m} to be a discrete
white-noise process, namely a collectionmefindependent normal random variables with mean
zero and variance?, associated with fixed regular-lattice locatiops; : 1,...,m} C D. Then

(1) can be approximated as follows:

Y(s) ~ Z k(s,u;)w(u;). (5)



The right-hand side of (5) can be made to converges to that)dfy (say) successively increas-
ing the density of the lattice locations by a factor of two ack dimension and decreasing the
variance of the{w(u;)} by a factor of2?. Besides being used to approximate the integral in the
convolution-based representationsYof-), the discretized convolution framework given by (5)
has been extended to allow the(u;)} to be dependent processes themselves; examples of such
approaches are discussed in Lee et al. (2005) and Cressielaam&sson (2006).

In the remaining sections of this paper, we review the variaays in which convolution-based
representations of Gaussian processes have been expindedelop flexible and computationally
efficient statistical models for spatial data.

Nonparametric Covariance Functions

One of the first examples of the use of convolution-basedessgmtations of Gaussian processes in
spatial statistics appeared in Barry and Ver Hoef (1996)eyTproposed a “blackbox” approach
to kriging (i.e., best linear unbiased spatial prediction; see, for exajptessie, 1993, Ch. 3)
using a flexible nonparametric specification of the variagrapresented by (3). To illustrate their
approach, we tak¥ (-) to be a process defined on a subseRdbfi.e, d = 1). In this case, Barry
and Ver Hoef’'s nonparametric kernels are taken to be piesseaonstant functions of the form,

Ko (h) = iaﬂ(“ _pl)c <h< ‘%) ,

J=1

whereZ(-) denotes the indicator function, so thd{-) hasp steps each of range> 0. Using (3)
and assuming that the lagis a multiplem of ¢/p, a variogram of the form,

m p p+m
c c c
29(h) == @i+ D (05— ai)’+ - Y af,
p j=1 pj:m+1 pj=p+1
2 & 2 &
SO R SR
p J=1 pj=m+1

is obtained. Then, Barry and Ver Hoef (1996) show that theakiations of2+(/) at multiples of
¢/p can be linearly interpolated to produce a valid variograringel for all A:

2y(h) = (1 = V)2y(qie/p) + V2vy(que/p)

whereq, = |hp/c| is the greatest integer less than or equakidc, ¢, = [hp/c]| is the small-
est integer greater than or equalitp/c, andV' = [h — (g c¢/p)]/(c/p) is the fraction that the
distanceh is from ¢; to ¢,. Similarly, in two dimensions, a nonparametric variograam e pro-
duced using kernels that are rectangles. In a later papekdef et al. (2004) show how the Fast
Fourier Transform (FFT) can be used to increase computatefficiency in calculating such non-
parametric variograms. A similar nonparametric convalatbased approach to modeling spatial
processes in subsets Bf based on kernels constructed by stacking cylinders of ngrizeights
and decreasing radii was explored in Kern (2000).
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Dimension Reduction

Models based on the discrete form of the convolution-basptesentation of (-) (Eq. (5)) with

a sparse support set for the latent process have been proposed to alleviate the computation
burden associated with fitting standard geostatisticaletso@.g., kriging) to large datasets. In
his model for ocean temperatures in the North Atlantic, 9igq1998) proposed a space-time
model based on discrete convolutions: a three-dimenskarakl with a separable (in space and
time) structure is used to convolve a latent three-dimeradidiscrete white-noise process on a
spatially sparse grid covering the study region. Both therse resolution of the latent process and
the separable form of the kernel result in dramatic redustio computational burden over what
would have been required to fit a standard Gaussian proceds| nvdh a nonseparable covariance
function to the data directly.

As a general framework for dimension reduction in spatiadeimg, Higdon (2002) considers
models for an x 1-dimensional data vectdf of the form

Z =ul, + Kw + e,

wherel,, is ann-dimensional vector of 19K is an x m matrix with entriesk(s;, u,), w is anm-
dimensional vector that is assumed to%€0, 721 ,,), € is ann-dimensional vector that is assumed
to beN(0,021,), andw ande are independent. Written in this manner, it is clear that ikerdte
convolution-based model can be thought of as a linear meteatts model €9., Pinheiro and
Bates, 2000). Thus, model-fitting can be carried out usingtions in standard statistical software
packages.

This discrete convolution-based approximation to a Gamsgrocess used in Higdon (1998) and
Higdon (2002) relies on using a kernel function that has asSian form. It has been demonstrated
through simulation studies iRk? that the distance between the lattice points should be ne than
the parameter of the Gaussian kernel. For more peaked.( exponential) kernels, a finer lattice
for the latent process is required and the computationahgawver traditional kriging are not as
substantial.

Nonstationary and Anisotropic Models

One of the primary uses of a convolution-based representati a Gaussian process is to build
models with nonstationary covariance structures. Twardisapproaches have been developed in
the literature, due to Higdon (Higdon, 1998; Higdon et @98) and Fuentes (Fuentes, 2002a,b).
The Higdon approach is to rewrite (4) as

Y(s) = /D K (s — )TV (du) 6)

where theparameters of the kernelk(s,u) = k%(s — u) are allowed to vary spatially. Using
a discretized version of (6), Higdon (1998) defines the sfiatreferenced kernet%(-) to be
a mixture of a finite set of Gaussian kernels, where the mixiegghts varying smoothly with
seD.



This approach was extended in Higdon et al. (1998) to a manergéclass of nonstationary and
anisotropic convolution-based models. The kernels weos@h to have a Gaussian form:

ky(h) = (2m)7Y|S(s)| " 2eaxp (~R'S(s)'h/2) ,h € R (7)

The covariance matrix of the Gaussian kernel associatddlagations, (s), is then parameter-
ized by the lengths of the major and minor axes of its oneelstatideviation ellipse, namelys
andbg, respectively, and the rotation andlg:

(s) = (aQS cos?(0s — m/2) + by sin?(0s — 7/2) sin(fs — 7/2) cos(fs — 7 /2)(b% — a?s))
sin(fg — m/2) cos(fs — 7/2) (b4 — a%) a%sin*(0s — 7/2) + b4 cos? (s — 7/2) )

Figure 1 illustrates a nonstationary and anisotropic Gangzocess constructed using the Higdon
approach. The plot on the left shows the one-standard-i@viallipses (shrunk by a factor of five)
of the Gaussian kernels associated with locations ih-al0 grid (i.e., the dimension of the latent
processy(-), m, is 100). The plot on the right shows a realization of the itesyGaussian process
on afiner resolutior1 x 21 grid. As expected, the process appears smoother in thegbphand
corner where the ellipses are larger, and it exhibits varyamounts of directional-dependence
structure corresponding to regions with noncircular siig.
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Figure 1. One standard deviation ellipses (shrunk by a faftbive) of the Gaussian kernels (left)
and a realization of the resulting nonstationary and aropat Gaussian process orza x 21 grid
(right).

Paciorek and Schervish (2006) extend these nonstatiomacggs-convolution models proposed
by Higdon et al. (1998). First, they consider a more easilgegalizable eigen-decomposition
specification for the spatially varying kernel covariancatritesX(s). In addition, they develop
a general class of nonstationary covariance functionsiticaides a nonstationary M&n covari-
ance function. They advocate the use of this model sincethi& corresponding stationary version
of the Magérn covariance function, it has a parameter that contr@sthoothness/differentiability
of the spatial process.

The Fuentes approach to modeling nonstationary procesgelveés convolving stationary pro-
cesses, as opposed to white-noise processes (Fuentes,®00he spatial domai is divided
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into m small subregions centered at nodes. . . , u,,. Defined on each subregion is a Gaussian
stationary spatial process«,) with covariance functiorCy, )’ whered(u;) is an unknown
region-specific parameter defining the covariance of thmr@processyg(u Then, a nonsta-
tionary process of® is defined by taking

m

Y(s) = k(s — w)Yyu,(s),

i=1

wherek?(-) is a stationary kernel €., it does not vary across space). Therefore, unlike the Higdo
approach that was based on allowing the kernels to varyadlyathonstationarity in the Fuentes
approach results from the spatially varying processSesy,)}. This approach has been extended
in Fuentes and Smith (2001) by allowing the paraméterto vary smoothly across space (rather
than at discrete nodes) and used to develop formal hypstiests for nonstationarity (Fuentes,
2002b, 2005). Related approaches include Nychka et al2jz0@odel for nonstationary spatial
data based on linear combinations of wavelet basis furst@omn Banerjee et al. (2004)’s spatial
model for house prices based on normalized distance-wadgums of stationary processes.

Multivariate Spatial Models

Convolution-based models have also been developed for dilgsag of multivariate spatial data.
Ver Hoef and Barry (1998) and Ver Hoef et al. (2004) considess-covariance functions defined
as

% v (i oy P By B Dy, D) = oy / KOs 0,)K%u — b+ A, — Ay 6,)du,

where the kernek? with parameter#, andé, describe the spatial dependencies in the marginal
processe¥),(-) andY,(-), p, andp, capture the cross-dependenciag,andA, describe the shift-
asymmetry, and the kernel functions are specified in a nampairic manner as in Barry and
Ver Hoef (1996); see also the section, Nonparametric Cavegi&unctions, above.

Other convolution-based multivariate spatial modelsudelthe multivariate space-time models in
Calder (2007a,b) and the convolutions of covariance funstaeveloped in Majumdar and Gelfand
(2007).

Spatio-temporal Models

Convolution-based models for space-time data can be deaglopa straightforward manner by
simply convolving a three-dimensional kernel with a thoeeensional white-noise processd.,
Higdon, 1998). However, capturing dynamic features suckeasonality or directional space-
time dependence using kernel functions may be problemaAticlitionally, the temporal domain
of many space-time processes is discrete; this featureffisulli to make explicit in standard
convolution-based modeling. An alternative approach gsep by Calder et al. (2002) and Higdon
(2002) is to convolve dynamic processes using two-dimersispatial kernels. Since it is based
on convolutions of dependent processes, this approachdiaslar flavor to the Fuentes approach
to modeling nonstationary spatial processes (Fuente2a0)
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As an illustration of these dynamic convolution-based ngd€alder et al. (2002) proposed a
model for ozone levels across the Eastern U.S. based on $gtace-time processes of the form

m

Y(s,t) =Y k(s —u)Yy,(t).

i=1

The processe§Yy, ()} evolve as

wheref(-; 3) is a parametric function of the values of the latent proce$¥g, } at the previous
time step and vy, } are independent Gaussian-process innovations. A relgggdach involving
convolutions of latent autoregressive processes was peapioy Sanso et al. (2005).

An alternative convolution-based space-time modelingnéaork was proposed by Wikle and
Cressie (1999), Wikle (2002), and Xu et al. (2005). Here, tr@ution of the latent space-time
process was specified as a convolution by letting

Y(s,t) = /ko(s C )Y (ut— 1) du+ (s, 1),

wheren(-, -) is a spatially colored error process independent in timekl&\(2002) and Xu et al.
(2005) chose kernel functions corresponding to partidédihtial equations governing(-). When
there is no readily available science to drive the dynanains,might choose the orthogonal-based-
function approach used by Wikle and Cressie (1999), or theawiyo linear modeling approach
used by Calder et al. (2002) and extended in Calder (2007a,b).

Directions for Future Research
We conclude our review of convolution-based models forigpatrocesses by proposing some
areas for future research.

Implications of Kernel Choice and Discretization

A kernel corresponding to a particular stationary covaz@functionC? (k) can be obtained by
Fourier inversion ofy.(h) (see above). However, in many situations, for a given kéroehriance
function there is not a closed-form expression for the davere function/kernel. In addition, the
functional form for a kernel corresponding to a particukati®nary covariance function may not be
the same for all dimensiong and the existence of a closed-form expression for a cavegifunc-
tion corresponding to a kernel function dependsidsee Kern, 2000, and Cressie and Pavl&gov
2002). Thus, while the convolution-based framework pesraigreat deal of modeling flexibility
through the choice of kernel function, it is important to erstand the implications of the choice
of kernel on the properties of the resulting process.

We believe that there is a need for careful consideratiomefaroperties of Gaussian processes
constructed via convolution-based models, along the lafeSressie and Pavlicév(2002) and
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Paciorek (2003). A related concern is the impact of the diszation on the properties of discrete
convolution-based Gaussian processes, as well as thdldi@fethe model. For the nonstationary
convolution-based models, this issue is addressed somewlraientes and Smith (2001) and
Paciorek (2003). However, there is still a need to look atréiationship between the sampling
design of the data and the level of discretization, as wdllmsthese features impact the ability to
detect nonstationary and isotropic features of the data.

Non-Gaussian Convolution-Based Models

As we have pointed out earlier, the specification for the @ss¢’(-) given in (1) can be readily
extended by substituting fdi/(-) other stochastic processes with independent incremengs (
Lévy processes). This approach has been considered by \Watmkickstadt (1998), who used
convolutions of gamma processes to develop a model foradjetint processes. Convolutions of
Léevy processes have also been considered by Tu (2006) fordimgpdpatio-temporal processes.

Processes on Non-Euclidean Spaces

Any space upon which Brownian motion can be defined will imgiple support a convolution-

based Gaussian model, through a generalization of (1). ample, convolution-based models
can be defined on the sphere. More generally, if there is arshéloeory, then the spectral rep-
resentation hints at how a convolution-based model coulddfmed; for example, the spectral
analysis for groups given in Diaconis (1988) might be exgdbfor abstract convolution-based
models.

A non-Euclidean model of immediate applicability on rivextworks is the class of convolution-
based models on directed trees. Ver Hoef et al. (2006) andcsiéresal. (2006) define “spatial”
models on river networks whose covariance between the psaaietwo locations on the network
is a function of river distance (rather than Euclidean dis&g between the two locations. The
convolution-based models use kernk(s, u) that areasymmetric, reflecting the physical nature
of a river that “downstream” should be treated differentigrh “upstream”. Indeed, it is possible
that one location is neither upstream nor downstream froothean location (e.g., they are on
different tributaries), in which case their process valaesindependent if the kernel is one-sided.
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