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Over the last decade, convolution-based models for spatialdata have increased in popularity as
a result of their flexibility in modeling spatial dependenceand their ability to accommodate large
datasets. The modeling flexibility is due to the framework’smoving-average construction that guar-
antees a valid (i.e., non-negative definite) spatial covariance function. Thisconstructive approach
to spatial modeling has been used (1) to provide an alternative to the standard classes of parametric
variogram/covariance functions commonly used in geostatistics; (2) to specify Gaussian-process
models with nonstationary and anisotropic covariance functions; and (3) to create non-Gaussian
classes of models for spatial data. Beyond the flexible nature of convolution-based models, com-
putational challenges associated with modeling large datasets can be alleviated in part through
dimension reduction, where the dimension of the convolved process is less than the dimension of
the spatial data. In this paper, we review various types of convolution-based models for spatial data
and point out directions for future research.

We consider models for continuously indexed spatial (i.e., geostatistical) data, and letZ =
(Z(s1), . . . , Z(sn))′ be ann × 1 vector of observations associated with known locations{si :
i = 1, . . . , n} ⊂ D ⊂ R

d. Using the observationsZ, we wish to make inference on an underlying
processY (·) that, when perturbed by random noise, yields the observation processZ(·). Here we
assume that for alls ∈ D, Z(s) = Y (s) + ǫ(s), where the noise processǫ(·) has mean zero,
varianceσ2

ǫ , and is independent across space, and the processesY (·) andǫ(·) are independent. To
simplify our discussion of convolution-based models for spatial data, we modify the model speci-
fication above by taking the processY (·) to have mean zero and decomposingZ(·) as follows:

Z(s) = µ(s) + Y (s) + ǫ(s) , s ∈ D .
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The goal is then to use the dataZ to infer the unknown parameters in the mean functionµ(·)
and the covariance structure of the spatially dependent processY (·). In this paper, we consider
convolution-based models forY (·).

In the traditional geostatistical setting (e.g., Cressie, 1993), the covariance function ofY (·),
CY (s1, s2) ≡ cov(Y (s1), Y (s2)), defined for alls1, s2 ∈ D, is usually assumed to belong to a
parametric class of covariance functions{C(P )(·, ·; θ) : θ ∈ Θ}, where for allθ ∈ Θ, C(P )(·, ·; θ)
is a valid covariance function (i.e., non-negative definite). For a stationary covariance function, we
denoteCY (s1, s2) = C0

Y (h), whereh = s1 − s2. Then Bochner’s Theorem states that

C0
Y (h) =

∫

Rd

eiω′hF (dω),

whereF is a nonnegative symmetric measure onR
d. The processY (·) can also be written as

Y (s) =

∫

Rd

eiω′sV (dω),

whereV (·) is a process with independent increments and

E
[

|V (dω)|2
]

= F (dω).

Now assume thatY (·) is Gaussian, and write

Y (s) =

∫

Rd

k(s,u)W (du), s ∈ D, (1)

wherek(·, ·) is a square-integrable (i.e.,
∫

k2(s,u) du < M < ∞) kernel function andW (·) is d-
dimensional Brownian motion (e.g., Yaglom, 1987). We can replaceW (·) with a general process
V (·) whose increments are independent, have mean zero, and have finite variance proportional
to the volume of the increment. Due to the independent increments ofV (·), it follows that the
covariance function ofY (·) is indirectly implied through the choice of the kernel function k(·, ·).
That is,

CY (s1, s2) =

∫

Rd

k(s1,u)k(s2,u) du ,

where, without loss of generality,E(V (du)2) = du. Then, for any finite numberk and any real
numbers{ai : i = 1, . . . , k},

k
∑

i=1

k
∑

j=1

aiajCY (si, sj) =
k

∑

i=1

k
∑

j=1

aiaj

∫

Rd

k(si,u)k(sj,u)du =

∫

Rd

(
k

∑

i=1

aik(si,u))2du ≥ 0 .

This is precisely the required non-negative-definiteness condition, and henceCY (·, ·) is a valid
covariance function. This constructive approach to specifying a Gaussian process was suggested
by Mat́ern (1986) and Thiébaux and Pedder (1987) and has been used to develop classes of models
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for spatial data that are referred to as spatial moving averages (SMA) or process convolutions; we
refer to this general class of spatial models asconvolution-based to emphasize its origins and its
generality. In virtually all that is to follow, we make the Gaussian assumption (that is, the statistical
models are based on the representation ofY (·) given in (1)), although this assumption is mostly
not needed.

Rather than estimating parameters in the covariance function, it is common in geostatistics to work
with the variogram function. Lettingh = s1 − s2 ∈ R

d, the variogram ofY (·) at lagh is defined
to be

2γY (h) ≡ var [Y (s1) − Y (s2)] , s1, s2 ∈ D ,

provided that the right-hand side is a function ofh = s1 − s2 (which is true ifY (·) is intrinsically
stationary). Suppose we consider a special case of (1) wherea Gaussian process is constructed as

Y (s) =

∫

Rd

k0(s − u)W (du), s ∈ D , (2)

wherek0(·) is a kernel function inRd. In this situation, the variogram can written as a function of
the kernelk0(·), as follows:

2γ(h) =

∫

Rd

(

k0(u) − k0(u − h)
)2

du. (3)

Further, the covariance function ofY (·) is stationary (i.e., C0
Y (h) = CY (s1, s2), whereh =

s1 − s2), since

C0
Y (h) =

∫

Rd

k0(u)k0(u − h) du . (4)

In this case, we can relate the kernelk0(·) and the covariance functionC0
Y (·) using the convolution

theorem for the Fourier transform, which states that the Fourier transform of the convolution of
two functions is proportional to the product of the Fourier transforms of each individual function.
Therefore, if we take the square root of the Fourier transform of C0

Y (·), and then we take its inverse
Fourier transform, we obtain a function that is proportional to the kernelk0(·) (see Kern, 2000,
for details on and examples of this result). Thus, dependingon the assumptions made about the
processY (·), expressions (1) - (2) can be used to motivate a convolution-based representation of
the covariance function ofY (·). This is a powerful approach due to the flexibility in the choice of
the kernelk(·, ·) or k0(·).

Frequently, convolution-based models are implemented using discretized versions of (1) - (2). To
illustrate this in the most general case (Eq. (1)), we define{ω(ui) : i = 1, . . . ,m} to be a discrete
white-noise process, namely a collection ofm independent normal random variables with mean
zero and varianceλ2, associated with fixed regular-lattice locations{ui : 1, . . . ,m} ⊂ D. Then
(1) can be approximated as follows:

Y (s) ≈
m

∑

i=1

k(s,ui)ω(ui). (5)
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The right-hand side of (5) can be made to converges to that of (1) by (say) successively increas-
ing the density of the lattice locations by a factor of two in each dimension and decreasing the
variance of the{ω(ui)} by a factor of2d. Besides being used to approximate the integral in the
convolution-based representations ofY (·), the discretized convolution framework given by (5)
has been extended to allow the{ω(ui)} to be dependent processes themselves; examples of such
approaches are discussed in Lee et al. (2005) and Cressie and Johannesson (2006).

In the remaining sections of this paper, we review the various ways in which convolution-based
representations of Gaussian processes have been exploitedto develop flexible and computationally
efficient statistical models for spatial data.

Nonparametric Covariance Functions
One of the first examples of the use of convolution-based representations of Gaussian processes in
spatial statistics appeared in Barry and Ver Hoef (1996). They proposed a “blackbox” approach
to kriging (i.e., best linear unbiased spatial prediction; see, for example, Cressie, 1993, Ch. 3)
using a flexible nonparametric specification of the variogram represented by (3). To illustrate their
approach, we takeY (·) to be a process defined on a subset ofR

1 (i.e., d = 1). In this case, Barry
and Ver Hoef’s nonparametric kernels are taken to be piecewise constant functions of the form,

k0(h) =

p
∑

j=1

ajI

(

(j − 1)c

p
< h ≤

jc

k

)

,

whereI(·) denotes the indicator function, so thatk0(·) hasp steps each of rangec > 0. Using (3)
and assuming that the lagh is a multiplem of c/p, a variogram of the form,

2γ(h) =
c

p

m
∑

j=1

a2
j +

c

p

p
∑

j=m+1

(aj − aj−m)2 +
c

p

p+m
∑

j=p+1

a2
j−m

=
2c

p

p
∑

j=1

a2
j −

2c

p

p
∑

j=m+1

ajaj−m ,

is obtained. Then, Barry and Ver Hoef (1996) show that these evaluations of2γ(h) at multiples of
c/p can be linearly interpolated to produce a valid variogram defined for allh:

2γ(h) = (1 − V )2γ(qlc/p) + V 2γ(quc/p) ,

whereql = ⌊hp/c⌋ is the greatest integer less than or equal tohp/c, qu = ⌈hp/c⌉ is the small-
est integer greater than or equal tohp/c, andV = [h − (qlc/p)]/(c/p) is the fraction that the
distanceh is from ql to qu. Similarly, in two dimensions, a nonparametric variogram can be pro-
duced using kernels that are rectangles. In a later paper, Ver Hoef et al. (2004) show how the Fast
Fourier Transform (FFT) can be used to increase computational efficiency in calculating such non-
parametric variograms. A similar nonparametric convolution-based approach to modeling spatial
processes in subsets ofR

2 based on kernels constructed by stacking cylinders of varying heights
and decreasing radii was explored in Kern (2000).
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Dimension Reduction
Models based on the discrete form of the convolution-based representation ofY (·) (Eq. (5)) with
a sparse support set for the latent processω(·) have been proposed to alleviate the computation
burden associated with fitting standard geostatistical models (e.g., kriging) to large datasets. In
his model for ocean temperatures in the North Atlantic, Higdon (1998) proposed a space-time
model based on discrete convolutions: a three-dimensionalkernel with a separable (in space and
time) structure is used to convolve a latent three-dimensional discrete white-noise process on a
spatially sparse grid covering the study region. Both the coarse resolution of the latent process and
the separable form of the kernel result in dramatic reductions in computational burden over what
would have been required to fit a standard Gaussian process model with a nonseparable covariance
function to the data directly.

As a general framework for dimension reduction in spatial modeling, Higdon (2002) considers
models for an × 1-dimensional data vectorZ of the form

Z = µ1n + Kω + ǫ,

where1n is ann-dimensional vector of 1s,K is an×m matrix with entriesk(si,uj), ω is anm-
dimensional vector that is assumed to beN(0, τ 2

Im), ǫ is ann-dimensional vector that is assumed
to beN(0, σ2

ǫ In), andω andǫ are independent. Written in this manner, it is clear that the discrete
convolution-based model can be thought of as a linear mixed-effects model (e.g., Pinheiro and
Bates, 2000). Thus, model-fitting can be carried out using functions in standard statistical software
packages.

This discrete convolution-based approximation to a Gaussian process used in Higdon (1998) and
Higdon (2002) relies on using a kernel function that has a Gaussian form. It has been demonstrated
through simulation studies inR2 that the distance between the lattice points should be no more than
the parameterτ of the Gaussian kernel. For more peaked (e.g., exponential) kernels, a finer lattice
for the latent process is required and the computational savings over traditional kriging are not as
substantial.

Nonstationary and Anisotropic Models
One of the primary uses of a convolution-based representation of a Gaussian process is to build
models with nonstationary covariance structures. Two distinct approaches have been developed in
the literature, due to Higdon (Higdon, 1998; Higdon et al., 1998) and Fuentes (Fuentes, 2002a,b).
The Higdon approach is to rewrite (4) as

Y (s) =

∫

D

k0
s(s − u)W (du) , (6)

where theparameters of the kernelk(s,u) ≡ k0
s(s − u) are allowed to vary spatially. Using

a discretized version of (6), Higdon (1998) defines the spatially referenced kernelk0
s(·) to be

a mixture of a finite set of Gaussian kernels, where the mixingweights varying smoothly with
s ∈ D.
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This approach was extended in Higdon et al. (1998) to a more general class of nonstationary and
anisotropic convolution-based models. The kernels were chosen to have a Gaussian form:

k0
s(h) = (2π)−1|Σ(s)|−1/2exp

(

−h
′Σ(s)−1

h/2
)

,h ∈ R
2. (7)

The covariance matrix of the Gaussian kernel associated with locations, Σ(s), is then parameter-
ized by the lengths of the major and minor axes of its one-standard-deviation ellipse, namelyas

andbs, respectively, and the rotation angleθs:

Σ(s) =

(

a2
s cos2(θs − π/2) + b2

s sin2(θs − π/2) sin(θs − π/2) cos(θs − π/2)(b2
s − a2

s)
sin(θs − π/2) cos(θs − π/2)(b2

s − a2
s) a2

s sin2(θs − π/2) + b2
s cos2(θs − π/2)

)

.

Figure 1 illustrates a nonstationary and anisotropic Gaussian process constructed using the Higdon
approach. The plot on the left shows the one-standard-deviation ellipses (shrunk by a factor of five)
of the Gaussian kernels associated with locations on a10×10 grid (i.e., the dimension of the latent
processω(·), m, is 100). The plot on the right shows a realization of the resulting Gaussian process
on a finer resolution21× 21 grid. As expected, the process appears smoother in the top right-hand
corner where the ellipses are larger, and it exhibits varying amounts of directional-dependence
structure corresponding to regions with noncircular ellipses.

+ + + + + + + + + +

+ + + + + + + + + +

+ + + + + + + + + +

+ + + + + + + + + +

+ + + + + + + + + +
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+ + + + + + + + + +
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+ + + + + + + + + +

Figure 1: One standard deviation ellipses (shrunk by a factor of five) of the Gaussian kernels (left)
and a realization of the resulting nonstationary and anisotropic Gaussian process on a21× 21 grid
(right).

Paciorek and Schervish (2006) extend these nonstationary process-convolution models proposed
by Higdon et al. (1998). First, they consider a more easily generalizable eigen-decomposition
specification for the spatially varying kernel covariance matricesΣ(s). In addition, they develop
a general class of nonstationary covariance functions thatincludes a nonstationary Matérn covari-
ance function. They advocate the use of this model since, like the corresponding stationary version
of the Mat́ern covariance function, it has a parameter that controls the smoothness/differentiability
of the spatial process.

The Fuentes approach to modeling nonstationary processes involves convolving stationary pro-
cesses, as opposed to white-noise processes (Fuentes, 2002a,b). The spatial domainD is divided
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into m small subregions centered at nodesu1, . . . ,um. Defined on each subregion is a Gaussian
stationary spatial processYθ(ui) with covariance functionCYθ(ui)

, whereθ(ui) is an unknown
region-specific parameter defining the covariance of the region’s processYθ(ui). Then, a nonsta-
tionary process onD is defined by taking

Y (s) =
m

∑

i=1

k0(s − ui)Yθ(ui)(s),

wherek0(·) is a stationary kernel (i.e., it does not vary across space). Therefore, unlike the Higdon
approach that was based on allowing the kernels to vary spatially, nonstationarity in the Fuentes
approach results from the spatially varying processes{Yθ(ui)}. This approach has been extended
in Fuentes and Smith (2001) by allowing the parameterθ(·) to vary smoothly across space (rather
than at discrete nodes) and used to develop formal hypothesis tests for nonstationarity (Fuentes,
2002b, 2005). Related approaches include Nychka et al. (2002)’s model for nonstationary spatial
data based on linear combinations of wavelet basis functions and Banerjee et al. (2004)’s spatial
model for house prices based on normalized distance-weighted sums of stationary processes.

Multivariate Spatial Models
Convolution-based models have also been developed for the analysis of multivariate spatial data.
Ver Hoef and Barry (1998) and Ver Hoef et al. (2004) consider cross-covariance functions defined
as

C0
Yp,Yq

(h; ρp, ρq, θp, θq, ∆p, ∆q) = ρpρq

∫

D

k0(u; θp)k
0(u − h + ∆p − ∆q; θq)du,

where the kernelk0 with parametersθp andθq describe the spatial dependencies in the marginal
processesYp(·) andYq(·), ρp andρq capture the cross-dependencies,∆p and∆q describe the shift-
asymmetry, and the kernel functions are specified in a nonparametric manner as in Barry and
Ver Hoef (1996); see also the section, Nonparametric Covariance Functions, above.

Other convolution-based multivariate spatial models include the multivariate space-time models in
Calder (2007a,b) and the convolutions of covariance functions developed in Majumdar and Gelfand
(2007).

Spatio-temporal Models
Convolution-based models for space-time data can be developed in a straightforward manner by
simply convolving a three-dimensional kernel with a three-dimensional white-noise process (e.g.,
Higdon, 1998). However, capturing dynamic features such asseasonality or directional space-
time dependence using kernel functions may be problematic.Additionally, the temporal domain
of many space-time processes is discrete; this feature is difficult to make explicit in standard
convolution-based modeling. An alternative approach proposed by Calder et al. (2002) and Higdon
(2002) is to convolve dynamic processes using two-dimensional spatial kernels. Since it is based
on convolutions of dependent processes, this approach has asimilar flavor to the Fuentes approach
to modeling nonstationary spatial processes (Fuentes, 2002a,b).
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As an illustration of these dynamic convolution-based models, Calder et al. (2002) proposed a
model for ozone levels across the Eastern U.S. based on latent space-time processes of the form

Y (s, t) =
m

∑

i=1

k0(s − u)Yui
(t).

The processes{Yui
(·)} evolve as

Yui
(t) = f (Yu1(t − 1), . . . , Yum

(t − 1); β) + νui
(t),

wheref(·; β) is a parametric function of the values of the latent processes {Yui
} at the previous

time step and{νui
} are independent Gaussian-process innovations. A related approach involving

convolutions of latent autoregressive processes was proposed by Sanso et al. (2005).

An alternative convolution-based space-time modeling framework was proposed by Wikle and
Cressie (1999), Wikle (2002), and Xu et al. (2005). Here, the evolution of the latent space-time
process was specified as a convolution by letting

Y (s, t) =

∫

k0(s − u, t)Y (u, t − 1) du + η(s, t) ,

whereη(·, ·) is a spatially colored error process independent in time. Wikle (2002) and Xu et al.
(2005) chose kernel functions corresponding to partial differential equations governingY (·). When
there is no readily available science to drive the dynamics,one might choose the orthogonal-based-
function approach used by Wikle and Cressie (1999), or the dynamic linear modeling approach
used by Calder et al. (2002) and extended in Calder (2007a,b).

Directions for Future Research
We conclude our review of convolution-based models for spatial processes by proposing some
areas for future research.

Implications of Kernel Choice and Discretization
A kernel corresponding to a particular stationary covariance functionC0

Y (h) can be obtained by
Fourier inversion ofC0

Y (h) (see above). However, in many situations, for a given kernel/covariance
function there is not a closed-form expression for the covariance function/kernel. In addition, the
functional form for a kernel corresponding to a particular stationary covariance function may not be
the same for all dimensionsd, and the existence of a closed-form expression for a covariance func-
tion corresponding to a kernel function depends ond (see Kern, 2000, and Cressie and Pavlicová,
2002). Thus, while the convolution-based framework permits a great deal of modeling flexibility
through the choice of kernel function, it is important to understand the implications of the choice
of kernel on the properties of the resulting process.

We believe that there is a need for careful consideration of the properties of Gaussian processes
constructed via convolution-based models, along the linesof Cressie and Pavlicová (2002) and
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Paciorek (2003). A related concern is the impact of the discretization on the properties of discrete
convolution-based Gaussian processes, as well as the overall fit of the model. For the nonstationary
convolution-based models, this issue is addressed somewhat in Fuentes and Smith (2001) and
Paciorek (2003). However, there is still a need to look at therelationship between the sampling
design of the data and the level of discretization, as well ashow these features impact the ability to
detect nonstationary and isotropic features of the data.

Non-Gaussian Convolution-Based Models
As we have pointed out earlier, the specification for the processY (·) given in (1) can be readily
extended by substituting forW (·) other stochastic processes with independent increments (e.g.,
Lévy processes). This approach has been considered by Wolpert and Ickstadt (1998), who used
convolutions of gamma processes to develop a model for spatial point processes. Convolutions of
Lévy processes have also been considered by Tu (2006) for modeling spatio-temporal processes.

Processes on Non-Euclidean Spaces
Any space upon which Brownian motion can be defined will in principle support a convolution-
based Gaussian model, through a generalization of (1). For example, convolution-based models
can be defined on the sphere. More generally, if there is a spectral theory, then the spectral rep-
resentation hints at how a convolution-based model could bedefined; for example, the spectral
analysis for groups given in Diaconis (1988) might be explored for abstract convolution-based
models.

A non-Euclidean model of immediate applicability on river networks is the class of convolution-
based models on directed trees. Ver Hoef et al. (2006) and Cressie et al. (2006) define “spatial”
models on river networks whose covariance between the process at two locations on the network
is a function of river distance (rather than Euclidean distance) between the two locations. The
convolution-based models use kernelsk(s,u) that areasymmetric, reflecting the physical nature
of a river that “downstream” should be treated differently from “upstream”. Indeed, it is possible
that one location is neither upstream nor downstream from another location (e.g., they are on
different tributaries), in which case their process valuesare independent if the kernel is one-sided.

References

Banerjee, S., Gelfand, A. E., Knight, J. R., and Sirmans, C. F.(2004). “Spatial modeling of house
prices using normalized distance-weighted sums of stationary processes.”Journal of Business
and Economic Statistics, 22, 2, 206–213.

Barry, R. and Ver Hoef, J. (1996). “Blackbox kriging: Spatial prediction without specifying vari-
ogram models.”Journal of Agricultural, Biological, and Environmental Statistics, 1, 297–322.

Calder, C. A. (2007a). “A Bayesian dynamic process convolution approach to modeling PM2.5
and PM10 concentration levels.”Environmetrics. Forthcoming.

9



— (2007b). “Dynamic factor process convolution models for multivariate space-time data with
application to air quality assessment.”Environmental and Ecological Statistics. Forthcoming.

Calder, C. A., Holloman, C., and Higdon, D. (2002). “Exploring space-time structure in ozone con-
centration using a dynamic process convolution model.” InCase Studies in Bayesian Statistics 6,
eds. C. Gatsonis, R. E. Kass, A. Carriquiry, A. Gelman, D. Higdon, D. Pauler, and I. Verdinelli,
165–176. New York: Springer-Verlag.

Cressie, N. (1993).Statistics for Spatial Data, Revised edn.. New York: John Wiley.

Cressie, N., Frey, J., Harch, B., and Smith, M. (2006). “Spatial prediction on a river network.”
Journal of Agricultural, Biological, and Environmental Statistics, 11, 127–150.

Cressie, N. and Johannesson, G. (2006). “Fixed rank kriging for large spatial datasets.” Tech. Rep.
780, Department of Statistics, The Ohio State University, Columbus, OH.
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