
Combining Incompatible Spatial Data
2002 paper by Carol A. Gotway and Linda J. Young

John Paige

Statistics Department
University of Washington

March 2, 2017

1



Change of Support Problems (COSPs): Types

 Journal of the American Statistical Association, June 2002

 (1993b) have illustrated the effect of autocorrelation on the
 variance of the sample mean. When areal units are similar
 to begin with, the aggregation process results in much less
 information loss than when the units are highly dissimilar.
 To further compound the problem, the aggregation process
 itself induces positive spatial autocorrelation, particularly if
 the aggregation process allows overlapping units (e.g., mov-
 ing averages). Cross-correlations with variables in neighboring
 units also can affect the results (Wong 1996).

 The smoothing effect and resulting alterations in the spa-
 tial autocorrelation of the units are also sources of the zoning
 effect. The MAUP does not exist, or at least its effects are

 much less pronounced, when aggregation of areal units is per-
 formed in a noncontiguous or spatially random fashion. Only
 when contiguous units are combined, altering the spatial auto-
 correlation among the units, is the zoning effect of MAUP
 most apparent. Because the variation among the original areal
 units is not uniform over the entire region, merging smaller
 units is analogous to smoothing different combinations of spa-
 tial neighbors. Depending on the similarity of the neighbors,
 different zoning rules may lead to different analytical results.
 Thus, given the plethora of ways of combining even a rela-
 tively small number of spatial units, it is not hard to see how
 one could produce "a million or so correlation coefficients" as
 Openshaw and Taylor (1979) found.

 The complex facets of the smoothing effect can be very dif-
 ficult to sort out in any given application, leading to a vast lit-
 erature on this problem. Some information is lost by aggregat-
 ing and going to increasingly larger scales. Systematic effects,
 caused by either the aggregation aspect or the zoning aspect of
 the MAUP, depend on the spatial relationships among the orig-
 inal data values, the statistics being calculated, and the way in
 which the units are aggregated. Thus the effects of the MAUP
 and ecological bias that may occur in any particular appli-
 cation are often difficult or impossible to ascertain. But this
 fundamental understanding of the problem makes it clear that
 any solution must find a way to (1) account for or circumvent
 the loss of information due to aggregation and (2) relate the
 variation among the aggregated units to the variation among
 the original units composing each aggregate. Although diffi-
 cult, this can be done, as described in Sections 3, 4, and 5.

 2.4 The General Change of Support Problem

 The different types of spatial data (point, line, area, sur-
 face), occurring naturally or as a result of the measurement
 process, potentially allow many ways of integrating these dif-
 ferent types of spatial data. Arbia (1989) uses the term spatial
 data transformations to refer to situations in which the spa-
 tial process of interest is inherently of one form but the data
 observed are of another form, resulting in a "transformation"
 of the original process of interest. For example, sometimes
 the data are just not available at the desired scale of interest.
 Meteorologic processes occur over a continuum, but only point
 observations along such a surface can be recorded. Individual-
 level inference may be desired, but to ensure data confiden-
 tiality, only aggregate data are made available. These situa-
 tions and all of Arbia's spatial data transformations are special
 cases of what is called the change of support problem (COSP)
 in geostatistics. The term "support" has come to mean simply

 the size or volume associated with each data value, but the

 complete specification of this term also includes the geomet-
 rical size, shape, and spatial orientation of the regions associ-
 ated with the measurements (see, e.g., Olea 1991). Changing
 the support of a variable (typically by averaging or aggrega-
 tion) creates a new variable. This new variable is related to the
 original one, but has different statistical and spatial properties.

 The problem of how the spatial variation in one variable asso-
 ciated with a given support relates to that of the other variable

 with a different support is the COSP. Table 1, modified from
 Arbia (1989), delineates some common COSPs.

 Both the ecological inference problem and the MAUP are
 just specific COSPs. Many other terms have also been intro-
 duced to describe particular COSPs and solutions to particu-
 lar COSPs including the scaling problem, inference between
 incompatible zonal systems, block kriging, pycnophylactic
 geographic interpolation, the polygonal overlay problem, areal
 interpolation, inference with spatially misaligned data, con-
 tour reaggregation, and multiscale and multiresolution model-
 ing. Many of these are discussed in more detail in subsequent
 sections.

 COSPs may result when studying a single spatial variable
 or when trying to relate two spatial variables of different
 supports. For example, consider a retrospective epidemiologic
 study designed to measure the effect of air quality on mortal-
 ity or morbidity. Often in such studies, only aggregate health
 data are available, reflecting cost, time, and confidentiality
 considerations. This is an area-to-point COSP, because aggre-
 gate data must be used to make inferences about individuals.
 Another COSP problem results when trying to link the expo-
 sure data to the health outcome information, because the two

 variables have inherently different scales. This serves to illus-
 trate a more fundamental problem not alleviated by even the
 most sophisticated measurement process. Disease is specific
 to an individual, but air quality varies over a continuum-how
 can these two different types of data be related in a way that
 permits valid inference?

 Table 1. Examples of COSPs

 We observe But the nature of

 or analyze the process is Examples

 Point Point Point kriging; prediction of
 undersampled variables

 Area Point Ecological inference;
 quadrat counts

 Point Line Contouring
 Point Area Use of areal centroids; spatial

 smoothing; block kriging

 Area Area The MAUP; areal interpolation;
 incompatible/misaligned zones

 Point Surface Trend surface analysis;
 environmental monitoring;
 exposure assessment

 Area Surface Remote sensing; multiresolution
 images; image analysis
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Change of Support Problems (COSPs): What can go
wrong?

How are areally aggregated values related to point observations?

I
Scale/aggregation e↵ect

I
Larger area ) more averaging/smoothing ) less knowledge of

finer resolution behavior

I
Zoning e↵ect

I
Overlapping areas?

I
Combined areas contiguous?

I
Ecological bias

I
Aggregation bias

I
Specification bias
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Examples

I
Coarse resolution gridded satellite data ) fine resolution

gridded data

I
Removing ecological bias may be impossible

I
Have county data on air quality, want to infer individual or

city mortality/cancer incidence

I
Even if we had pointwise air quality observations and

individual’s exact address, not clear how to best use this

information to get individual cancer incidence
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Modeling COSPs

Let Z (s) for s 2 Rd
be our spatial process at point location s.

Assume EZ (s) = µ(s) and Cov (Z (u),Z (v)) = C (u, v). Let
B1, ...,Bn be regions in the domain of Z (·), and define:

Z (Bi ) ⌘
1

|Bi |

Z

Bi

Z (s) ds

where |Bi | is the volume of Bi .
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Modeling COSPs

Assume EZ (s) = x(s)0�. Then

EZ (B) = x(B)0�

for

xj(B) ⌘
1

|B |

Z

B
xj(s) ds

Similarly,

Cov (Z (Bi ),Z (Bj)) =
1

|Bi ||Bj |

Z

Bi

Z

Bj

C (u, v) du dv

Cov (Z (B),Z (s)) =
1

|B |

Z

B
C (u, s) du

Note: we can approximate these integrals with sums

6



Modeling COSPs

I
Without point data, estimating C (u, v) using likelihood can

be intractable. Using variograms is an option
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Nonlinear COSPs

What happens if our observations are nonlinear transformations of

normal random variables?

I
Multi-Gaussian approach

I
Binary data

I
Isofactorial models
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Nonlinear COSPs: Multi-Gaussian approach

Assume our process at a point s can be written Z (s) = �(Y (s))
for Y (s) gaussian and �(·) some transformation. If we can fit a

model for Y (s), then we use simulations to discretize B into points

u01, ..., u
0
N to estimate:

P(Z (B) < z) ⇡ P

0

@ 1

N

NX

j=1

Z (u0j)|Z (s1), ...,Z (sn)

1

A

= P

0

@ 1

N

NX

j=1

�(Y (u0j))|Y (s1), ...,Y (sn)

1

A

for s1, ..., sn observation locations
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Nonlinear COSPs: Binary data

I
Quantity of interest is the indicator I (Z (s)  z)

I
Note that for point to block predictions, we might not want:

I ⇤(B) =
1

|B |

Z

B
I (Z (d)  z) ds

instead we might want:

I (B) = I (Z (B)  z)

because then the conditional expectation in kriging prediction

yields P(Z (B)  z)
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Nonlinear COSPs: Binary data

I
Quantity of interest is the indicator I (Z (s)  z)

I
Note that for point to block predictions, we might not want:

I ⇤(B) =
1

|B |

Z

B
I (Z (d)  z) ds

instead we might want:

I (B) = I (Z (B)  z)

because then the conditional expectation in kriging prediction

yields P(Z (B)  z)

I
For nonlinear block prediction using simulation, we can

estimate the empirical cdf of Z (B) using multiple indicator

kriging

11



Nonlinear COSPs: Isofactorial models

Gij(dzi , dzj) =
1X

m=0

Tm(i , j)�m(zi )�m(zj)G (dzi )G (dzj)

I �m(z) are orthonormal, so:

�0(z) = 1

E (�m(Zi )) = 0

Var (�m(Zi )) = 1

Cov (�m(Zi ),�p(Zj)) = 0

Cov (�m(Zi ),�m(Zj)) = Tm(i , j)
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Nonlinear COSPs: Isofactorial models

Gij(dzi , dzj) =
1X

m=0

Tm(i , j)�m(zi )�m(zj)G (dzi )G (dzj)

I
Form of polynomials �m(z) determined by marginal

distribution, G (dz). If G (dz) is Gaussian, then authors

suggest using Hermite polynomials

I Tm(i , j) determined from joint distributions (Z (si ),Z (sj)). If
bivariate normal with correlation function ⇢(ki � jk), then
Tm(i , j) = [⇢(ki � jk)]m
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Nonlinear COSPs: Isofactorial models

I
For a Gaussian process, we have that

I (B) = G (z) +
1X

m=1

1p
m
Hm�1(z)g(z)Hm(Z (B))

for G and g Gaussian cdf and pdf respectively.

I
The prediction is then obtained by replacing each Hm(Z (B))
with the predictor obtained via kriging. In practice this is very

di�cult, since we must do this while estimating the model

parameters
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Multiscale Tree Model

 Gotway and Young: Combining Incompatible Spatial Data

 Both Tobler (1989) and Amrhein and Flowerdew (1992)
 described models that can be "upscaled" but show no aggre-
 gation effects.

 Tobler (1989) further suggested choosing models whose
 parameters change in a predictable manner across scales to
 solve the aggregation aspect of the MAUP. This is similar
 to the recommendations made by Cressie (1996, 1998) and
 to the ideas of Fotheringham (1989), who suggested focus-
 ing on rates of change across scales and using the fractal
 dimension as a scale-independent measure of a spatial rela-
 tionship. Fractals have been effective multiscale models in sev-
 eral disciplines (e.g., Palmer 1988; Milne 1988; Sugihara and
 May 1990; Emerson, Lam, and Quattrochi 1999). Other sta-
 tistical methods with a similar goal include spectral analysis
 (Renshaw and Ford 1984; Nielsen, Wendroth, and Parlange
 1995), entropy decomposition analysis (Theil 1972; Batty
 1976; Phipps 1991; Johnson and Patil 1998), nested analysis
 of variance (Greig-Smith 1952; Moellering and Tobler 1972;
 Oliver and Webster 1986; Bellehumeur and Legendre 1998;
 Ver Hoef and Cressie 1993), local image variation graphs in
 remote sensing (Woodcock and Strahler 1987), geostatistical
 methods (Legendre and Fortin 1989; Bell et al.1993; Ver Hoef,
 Cressie, and Glenn-Lewin 1993; Goovaerts 1998), and Markov
 transition models (Patil and Taillie 1999).

 4.2 Multiscale Spatial Tree Models

 To describe spatial processes operating at multiple res-
 olutions, Basseville et al. (1992) and Chou, Willsky, and
 Nikoukah (1994) developed a scale-recursive algorithm based
 on a multilevel tree. Each level of the tree corresponds to a
 different spatial scale, with the finest scale at the lowest level
 of the tree. Let s represent any node on the tree, let so denote
 the node at the coarsest scale (the "root node") of the tree,
 and let T denote the collection of all nodes of the tree. Nodes

 at the very finest scale are referred to as the leaves of the tree,
 and a node at one scale that is related to nodes at the next

 finest scale via the branches of the tree is called a parent node,
 denoted by ps. A simple tree structure is shown in Figure 1.

 -.2 =, , /^\ S;
 w----- MV^ ^7T

 Figure 1. A Tree Structure for Multiscale Processes.

 The goal is to predict an unobservable spatial process
 {X(s), s E T}, called the state process, from a noisy measure-
 ment process {Z(s), s E T}, from which data are observed at
 some nodes of the tree. The measurement process is assumed
 to be linearly related to the state process via the measurement
 equation

 Z(s) = K(s)X(s) + E(s),  (11)

 where Z(s) is a n x 1 vector of measurements at node s; X(s)
 is a m x 1, zero-mean state vector that we would like to pre-
 dict; E(s) is a white noise process independent of X(s), with
 known covariance matrix R(s) that reflects measurement error
 in the observations; and K(s) is an n x m deterministic selec-
 tion matrix that relates the measurements to the state vector.

 The selection matrix specifies the components of the state vec-
 tor that are measured and how each of these corresponds to
 the measurements at node s.

 The state vector is not observable, but it is assumed to be
 related to its parent through the state equation

 X(s) = I(s)X(ps) + iq(s),  (12)

 where (q(s) is a white noise process with covariance matrix
 Q(s) that is independent of both E(s) and X(ps). In addition
 to this "downtree" model, a corresponding "uptree" model can
 be derived. Assuming that X(s) follows a multivariate Gauss-
 ian distribution and using properties of conditional Gauss-
 ian distributions together with (12) gives E(X(ps)lX(s))=
 Pp(I'(s)Ps-lX(s), where Ps is the covariance matrix of X(s).
 Then the uptree model can be written as

 X(ps) = F(s)X(s) + o(s),  (13)

 where F(s) = Pp '(s)P-1, co(s) = X(ps)-Pp V'(s)Ps-'X(s),
 and W(s) E E(o(s)o'(s)) = Pp(I - '(s)S-Ps-'(s)Pps). If
 P0, the prior covariance of X(s0) at the root node, is spec-
 ified, then, from (12), Ps can be calculated recursively as
 P, = (s)Pp ' (s) + Q(s).

 Based on this model, Chou et al. (1994) generalized the
 Kalman filter to produce optimal predictions of the state vector
 in two steps. The first step, called an uptree filtering step, pro-
 ceeds upward from the leaves of the tree to the root, succes-
 sively computing the optimal predictor of X(s) and an associ-
 ated PMSE based on the data at this node and at all nodes on

 the subtree below s. An additional Kalman filtering algorithm
 is also used in a "merge step" that combines predictions at
 the offspring nodes into a single prediction for use in updat-
 ing prior information for the next prediction. The second step,
 called a downtree smoothing step, proceeds downward from
 the root of the tree, giving the optimal predictor of the state
 vector and an associated PMSE based on all available data. In

 this way, the algorithm can use data at multiple spatial scales.
 The algorithm is computationally efficient because it involves
 only local calculations by making the assumption of condi-
 tional independence: Conditional on any node of the tree, each
 of the subtrees connected to it is assumed to be condition-

 ally independent. Thus computations involving the nodes of
 each subtree can be processed separately, allowing the order
 of computations to be proportional to the number of nodes at
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Z(s) = K(s)X(s) + "(s)

I
Z(s) is an n ⇥ 1 vector of measurements at location s

I
X(s) is the true state with covariance R(s)

I
K(s) is an n ⇥m selection matrix specifying which elements

of state vector are measured
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Multiscale Tree Model

We use both downtree and uptree models:

X(s) = �(s)X(ps) + ⌘(s)

X(ps) = F (s)X(s)| {z }
=E [X(ps)|X(s)]

+ !(s)

for

F (s) = Pps�
0
(s)P�1

s

!(s) = X(ps)� Pps�
0
(s)P�1

s X(s)

W (s) ⌘ E (!(s)!0
(s)) = Pps (I ��0

(s)P�1
s �(s)Pps )

I ⌘(s) is independent white noise process with covariance Q(s)

I Ps is the covariance matrix of X(s), calculated with

Ps = �(s)Pps�
0
(s) + Q(s)
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Multiscale Tree Model

Uses 2 step fitting process:

1. leaves ! root

2. root ! leaves

I
Computationally e�cient since each node only requires local

observations (model assumes that conditional on any node, its

subtrees are assumed to be independent.

I
The question then becomes how to model di↵erences in

variance at di↵erent scales. You could assume variance is the

same no matter the scale or ‘heterogeneous’ variances.
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Rest of paper and Conclusions

I
The authors recommend multiscale modeling as a possible

solution to the problem of COSP, since it more deliberately

breaks down the relationships between scales

I
Conditional modeling approach with tree model lends itself

well to Bayesian hierarchical modeling

I
Conditional on parent node, do we really think subtrees are

independent?
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