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Change of Support Problems (COSPs): Types

Table 1. Examples of COSPs

We observe
or analyze

But the nature of
the process is

Examples

Point

Area

Point
Point

Area

Point

Area

Point

Point

Line
Area

Area

Surface

Surface

Point kriging; prediction of
undersampled variables

Ecological inference;
quadrat counts

Contouring

Use of areal centroids; spatial
smoothing; block kriging

The MAUP; areal interpolation;
incompatible/misaligned zones

Trend surface analysis;
environmental monitoring;
exposure assessment

Remote sensing; multiresolution
images; image analysis




Change of Support Problems (COSPs): What can go
wrong?

How are areally aggregated values related to point observations?
» Scale/aggregation effect

» Larger area = more averaging/smoothing = less knowledge of
finer resolution behavior

» Zoning effect

» Overlapping areas?

» Combined areas contiguous?
» Ecological bias

» Aggregation bias

» Specification bias



Examples

> Coarse resolution gridded satellite data = fine resolution
gridded data

» Removing ecological bias may be impossible
» Have county data on air quality, want to infer individual or
city mortality/cancer incidence

» Even if we had pointwise air quality observations and
individual’'s exact address, not clear how to best use this
information to get individual cancer incidence



Modeling COSPs

Let Z(s) for s € RY be our spatial process at point location s.
Assume EZ(s) = p(s) and Cov (Z(u), Z(v)) = C(u, v). Let
By, ..., B, be regions in the domain of Z(-), and define:

where |B;| is the volume of B;.



Modeling COSPs

Assume EZ(s) = x(s)'3. Then

for

Similarly,

Cov(Z(B,), Z(B;)) = B,-|1|Bj| /B /B C(u,v) du dv

Cov(Z(B),Z(s)) = ;|/BC(U,S) du

Note: we can approximate these integrals with sums



Modeling COSPs

» Without point data, estimating C(u, v) using likelihood can
be intractable. Using variograms is an option




Nonlinear COSPs

What happens if our observations are nonlinear transformations of
normal random variables?

» Multi-Gaussian approach

» Binary data

> |sofactorial models




Nonlinear COSPs: Multi-Gaussian approach

Assume our process at a point s can be written Z(s) = ¢(Y(s))
for Y(s) gaussian and ¢(-) some transformation. If we can fit a

model for Y(s), then we use simulations to discretize B into points
Uy, ..., up to estimate:

P(Z(B) < z)=~ P ZZ( NZ(s1), -, Z(sn)

N

= Z NY(s1), .., Y(sn)

=1

for si, ..., s, observation locations



Nonlinear COSPs: Binary data

» Quantity of interest is the indicator /(Z(s) < z)

» Note that for point to block predictions, we might not want:

]B\/ (d) < z) ds

instead we might want:
I(B)=1(Z(B) < 2)

because then the conditional expectation in kriging prediction
yields P(Z(B) < z)
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Nonlinear COSPs: Binary data

» Quantity of interest is the indicator /(Z(s) < z)
» Note that for point to block predictions, we might not want:

]B\/ Z(d)<z)ds

instead we might want:

I(B)=1(Z(B) < 2)
because then the conditional expectation in kriging prediction
yields P(Z(B) < z)
» For nonlinear block prediction using simulation, we can

estimate the empirical cdf of Z(B) using multiple indicator
kriging
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Nonlinear COSPs: Isofactorial models

Gi(dzi, dz) = Y Tun(i. ) xm(21)Xm(2}) G(d2;) G(dz)

> Xm(z) are orthonormal, so:

xo(z) =1
E(xm(Zi)) =0

Var (xm(Zi)) =1

Cov (xm(Zi), xp(Zj)) =0
Cov (xm(Zi); xm(Zj)) = Tm(i,J)
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Nonlinear COSPs: Isofactorial models

U dZ,,dZJ Z Tm ’ ./ Xm Zj Xm(ZJ)G(dZI)G(dZJ)
m=0

» Form of polynomials xm(z) determined by marginal
distribution, G(dz). If G(dz) is Gaussian, then authors
suggest using Hermite polynomials

» Tm(i,j) determined from joint distributions (Z(s;), Z(s;)). If
bivariate normal with correlation function p(||i — j||), then

Tm(i,J) = [p(lli = JIDI™
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Nonlinear COSPs: Isofactorial models

» For a Gaussian process, we have that
=1
I(B) = G(2) + mZ::l ﬁHm—l(z)g(z)Hm(Z(B))

for G and g Gaussian cdf and pdf respectively.

» The prediction is then obtained by replacing each H,,(Z(B))
with the predictor obtained via kriging. In practice this is very
difficult, since we must do this while estimating the model
parameters
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Multiscale Tree Model

Figure 1. A Tree Structure for Multiscale Processes.

Z(s) = K(s)X(s) + &(s)

» Z(s) is an n x 1 vector of measurements at location s
» X(s) is the true state with covariance R(s)

» K(s) is an n x m selection matrix specifying which elements
of state vector are measured

15



Multiscale Tree Model
We use both downtree and uptree models:
X(s) = ®(s)X(ps) + n(s)
X(ps) = F(s)X(s) + w(s)

——
=E[X(ps)[X(s)]

for

F(s) = Pp®'(s)Ps!
s) = X(ps) = Pp.®'(s)P5 ' X(s)
W(s) = E(w(s)w'(s)) = Py, (I — ®'(s)P ' ®(5)Pp,)

» 7(s) is independent white noise process with covariance Q(s)

> Ps is the covariance matrix of X(s), calculated with
Ps = ®(s)Pp, ®'(s) + Q(s)
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Multiscale Tree Model

Uses 2 step fitting process:
1. leaves — root

2. root — leaves

» Computationally efficient since each node only requires local
observations (model assumes that conditional on any node, its
subtrees are assumed to be independent.

» The question then becomes how to model differences in
variance at different scales. You could assume variance is the
same no matter the scale or ‘heterogeneous’ variances.
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Rest of paper and Conclusions

» The authors recommend multiscale modeling as a possible
solution to the problem of COSP, since it more deliberately
breaks down the relationships between scales

» Conditional modeling approach with tree model lends itself
well to Bayesian hierarchical modeling

» Conditional on parent node, do we really think subtrees are
independent?
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