
Introduction	to	Stan	and	
Hamiltonian	Monte	Carlo

Space-Time	Reading	Group

Sahar	Z	Zangeneh
November	7,	2017

Outline	of	Talk

• Overview	of	Stan	programming	language
• Challenges	in	high-dimensional	settings
• Intuition	behind	Hamiltonian	Monte	Carlo

References

• Betancourt,	M.,	2017.	A	Conceptual	Introduction	to	Hamiltonian	Monte	Carlo. arXiv
preprint	arXiv:1701.02434.

• Carpenter,	B.,	Gelman,	A.,	Hoffman,	M.,	Lee,	D.,	Goodrich,	B.,	Betancourt,	M.,	Brubaker,	
M.A.,	Guo,	J.,	Li,	P.	and	Riddell,	A.,	2016.	Stan:	A	probabilistic	programming	
language. Journal	of	Statistical	Software, 20,	pp.1-37.

• Gelman,	A.,	Lee,	D.	and	Guo,	J.,	2015.	Stan:	A	probabilistic	programming	language	for	
Bayesian	inference	and	optimization. Journal	of	Educational	and	Behavioral	
Statistics, 40(5),	pp.530-543.

• Neal,	R.M.,	2011.	MCMC	using	Hamiltonian	dynamics. Handbook	of	Markov	Chain	Monte	
Carlo, 2(11).

What	is	Stan?

• Open-source	probabilistic	programming	language	for	specifying	
statistical	models

• Named	after	Stanislaw	Ulam,	a	mathematician	who	was	one	of	
the	developers	of	the	Monte	Carlo	method	in	the	1940s

• Allows	a	user	to	write	a	Bayesian	model	in	a	convenient	language	
whose	code	looks	like	statistics	notation
• User	writes	a	Stan	code	that	directly	computes	the	log-posterior	density
• Result	is	a	set	of	posterior	simulations	of	the	parameters	in	the	model

• Uses	Hamiltonian	Monte	Carlo	instead	of	MCMC

How	does	Stan	work?

• Perform	Bayesian	inference	via	C++	program	
• No-U-turn	sampler,	an	adaptive	variant	of	Hamiltonian	Monte	Carlo
• Could	only	perform	inference	for	continous parameters
• Main	limitation	of	Stan
• Allows	for	discrete	data	and	discrete-data	models	such	as	logistic	
regressions,	but	it	cannot	perform	inference	for	discrete	unknowns
• Re-express	discrete	parameter	models	as	mixture	models	with	continuous	
parameters.	Sometimes	this	sort	of	re-expression	does	not	exist

Motivation	for	Stan	software

•Motivated	by	attempt	to	apply	full	Bayesian	inference	
to	multilevel	generalized	linear	models,	structured	with	
• grouped	and	interacted	predictors	at	multiple	levels	
• hierarchical	covariance	priors
• nonconjugate coefficient	priors
• latent	effects	as	in	item-response	models	
• varying	output	link	functions	and	distributions	

• Needed	a	better	sampler,	rather	than	more	efficient	
implementation	of	Gibbs	sampling	

Algorithmic	challenges	with	HMC

1. Hamiltonian	dynamics	simulation	requires	gradient	of	the	
log	posterior	
• Computing	by	hand	on	a	model-by-model	basis	very	tedious	and	prone	
to	error	error
• Reverse-mode	algorithmic	differentiation	(Carpenter	et	al,	2017)

2. Variables	with	constrained	support
3. Sensitivity	to	two	tuning	parameters
• Discretization	interval	(i.e.,	step	size)	– tune	during	warm-up	based	on	
Metropolis	rejection	rates
• Total	simulation	time	(i.e.,	number	of	steps) -- difficult	to	tune	without	
sacrificing	the	detailed	balance	of	the	sampler.	
• No	U-Turn	(NUTS)	sampler	(Hoffman	and	Gelman,	2011)

Sequences	of	statements	and	execution	order
• Stan	allows	sequences	of	statements	wherever	they	may	occur,	e.g.,	
statements	are	executed	imperatively	in	the	order	in	which	they	occur	
in	a	program
• Blocks	and	variable	scope	
• Sequences	of	statements	surrounded	by	curly	braces	({	and	})	form	
blocks.	
• Blocks	may	start	with	local	variable	declarations.	scope	of	local	
variables	is	limited	to	that	specific	block	
• Other	variables,	e.g.,	those	declared	as	data	or	parameters,	need	to	
specifically	be	assigned.	May	be	used	in	(i)	the	block	in	which	they	are	
declared	or	(ii)	any	block	after	the	block	in	which	they	are	declared

Blocks	and	variable	scope in	Stan

• A	Stan	program	starts	with	an	(optional)	data	block,	which	
declares	the	data	required	to	fit	the	model	
• Sequences	of	statements	surrounded	by	curly	braces	({	and	
})	form	blocks
• Blocks	may	start	with	local	variable	declarations.	Scope	of	
local	variables	is	limited	to	that	specific	block	
•Other	variables,	e.g.,	those	declared	as	data	or	parameters,	
need	to	specifically	be	assigned.	May	be	used	in	(i)	the	
block	in	which	they	are	declared	or	(ii)	any	block	after	the	
block	in	which	they	are	declared

Stan	Data	Blocks	-- ctd

• (Transformed)	data	block	
• Define	new	variables	that	can	be	computed	based	on	the	data	

• (Transformed)	parameters	block	
• Executed	after	the	parameter	block.	
• Constraints	are	validated	after	all	of	the	statements	defining	the	
transformed	parameters	have	been	executed.	
• If	transformed	parameters	are	used	on	the	left-hand	side	of	a	
sampling	statement,	up	to	user	to	add	appropriate	log	Jacobian
adjustment	to	the	log	probability	accumulator	

•Model	block	
• Defines	the	log	probability	function	on	the	constrained	parameter	
space	

Example:	Generating	lognormal	variate in	Stan
• Generate	without	the	built-in	lognormal	density	function
• Transform	is	f(u)	=	log(u)	,	so	f-1(v)	=	exp(v),	so	absolute	log	
Jacobian is	|d(exp(v)/dv|	=	exp(v)	=	u

Implicit	change	of	variables	to	unconstrained	space

• In	Stan,	probability	distribution	intended	to	have	unconstrained	
support	(i.e.,	no	points	of	zero	probability)	-- simplifies	the	task	
of	writing	samplers	or	optimizers
• Transform	variables	declared	with	constrained	support	to	an	
unconstrained	space,	e.g.	log-transform	variables	defined	on	[0,1]
• Dimensionality	of	resulting	probability	function	may	change	as	a	
result	of	the	transform	
• Inverse	transform	unconstrained	parameters	over	which	the	model	is	
defined	back	to	their	constrained	forms	before	executing	the	model	
code
• Log	absolute	Jacobian determinant	of	the	inverse	transform	is	added	
to	the	overall	log	probability	function	to	account	for	change	of	
variables	

Data	block	summary

Assignment	and	Sampling

• Log	density	accumulator
• Implicitly	defined	through	function	target()

• Sampling	Statements
•Merely	shorthand	for	incrementing	log	denisty
accumulator

•Define	variables	before	sampling	statements
•Direct	definition	of	probability	functions

Missing	Data	in	Stan

•Missing	data	models	may	still	be	coded	in	Stan,	but	
the	missing	values	must	be	declared	as	parameters	

Function	and	distribution	library

• Basic	operators	– C++
• Special	functions	– C++	and	beyond
•Matrix	and	linear	algebra	functions
• Probability	functions
• Growing	list	of	built-in	univariate and	multivariate	densities
• Everything	defined	on	log	scale	to	avoid	underflow
• All	named	with	suffix	_lpdf or	_lpmf
• Up	to	a	proportion	calculations
• Univariate also	accept	arrays	or	vectors	as	arguments

Hamiltonian	Monte	Carlo	– Some	Intuition

• Open-source	probabilistic	programming	language	for	specifying	
statistical	models

• Named	after	Stanislaw	Ulam,	a	mathematician	who	was	one	of	
the	developers	of	the	Monte	Carlo	method	in	the	1940s

• Allows	a	user	to	write	a	Bayesian	model	in	a	convenient	language	
whose	code	looks	like	statistics	notation
• User	writes	a	Stan	code	that	directly	computes	the	log-posterior	density
• Result	is	a	set	of	posterior	simulations	of	the	parameters	in	the	model

• Uses	Hamiltonian	Monte	Carlo	instead	of	MCMC

