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Objective 
To obtain separate models for spill efficiency (SPE) and fish 
guidance efficiency (FGE) using detection probabilities from a 
bypass system and a set of covariates. 

SPE = probability enter spillway 

P(Powerhouse) = P(Turbines) + P(Bypass) = 1 - SPE 

FGE = probability enter bypass given entered powerhouse 

P(Bypass) = (1 – SPE)*FGE 

By letting SPE be a function of spill proportion and possibly other 
variables, the FGE and SPE components can be separately estimated. 

P(Bypass) = (1 – f(x))*g(z) 

Use the logit function to constrain f and g outputs to interval (0,1). 

Let h(y) = logit(y) = log[ y / (1 - y) ], then a linear predictor function 
for the mean of FGE on the logit scale is: 

Model Description 
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Conclusions 
• Modeling separate functions for SPE and FGE is possible with 

PIT tag data, but model complexity should be minimized.  This 
method works best when there are a wide range of spill values 
and there are periods of low or zero spill in the data.  

• Beta regression is flexible and allows modeling of variances.  
Process variance can be estimated, but it cannot be estimated 
separately for FGE and SPE. 

• Will need to further validate the method with data from active 
tag studies and computer simulations.  Will also apply this 
method to data for Chinook and steelhead at other dams. 
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Vartotal = Varprocess + Varsampling 

The detection probability estimates     have sampling variance 
estimates associated with them, which can be accounted for and 
used to estimate remaining process variance.   

Methods 
• Response data were Cormack-Jolly-Seber (CJS) estimates of 

detection probabilities at Lower Granite Dam for weekly 
release groups of run-of-river steelhead released from 5 
separate smolt traps from 1997-2011 (n = 426).  

• Explanatory variables were associated measures of water 
temperature, water velocity, spill proportion (logit- 
transformed), usage of removable spillway weir (RSW), and 
day of year. 

• Matched 3 possible FGE models and 8 possible SPE models for 
24 total models. 
– Possible FGE models: (1) intercept only, (2) intercept  + day, (3) 

intercept + temperature. 

– Fullest SPE model: intercept + RSW + logit(spill) + velocity + 
RSW*velocity + logit(spill)*velocity 

• Used maximum likelihood to fit models to data for 1997-2010 
(n = 400) and used AIC selection to rank the models.  

• Used best model (lowest AIC) to predict bypass probabilities 
for 2011 (n = 26).  

Background 
Management of endangered salmon in the Columbia River Basin 
depends in part on knowledge of passage behavior of migrating 
juveniles at hydroelectric dams. The relative rates of passage 
among various routes depend on dam operations, environmental 
conditions, and individual fish characteristics. Data from acoustic 
or radio tags can provide a known time and route of passage for 
each individual fish, but studies using active tags are limited in 
number and scope, and often represent a narrow range of 
conditions. PIT-tagged fish offer an alternative data source 
available for multiple species, years, environmental conditions, 
and dams, but with the limitation that time and route of passage 
are only known for fish that enter juvenile bypass systems.  A 
modeling approach was needed that could utilize PIT tag data 
and estimate functions that would predict passage probabilities 
through all routes.  These models would then be used as part of a 
larger passage model (COMPASS model)  used for predicting 
juvenile survival, travel time, and transportation rates.  

FGE SPE Np AICc ∆AICc AIC.Wt CumWt 

I + T I + R + Sp + V + R*V + R*Sp 9 -863.7 0.0 0.854 0.85 

I + D I + R + Sp + V + R*V + R*Sp 9 -859.2 4.5 0.090 0.94 

I I + R + Sp + V + R*V + R*Sp 8 -858.3 5.4 0.056 1.00 

I + T I + R + Sp + V       +      R*Sp 8 -828.5 35.2 0 1 

I I + R + Sp + V       +      R*Sp 7 -824.2 39.5 0 1 

Fig. 1. CJS detection (bypass) probability estimates by spill proportion (left) and by year (right).   

Results 
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and a linear predictor for the mean of SPE on the logit scale is: 

where the Xi and Zj are explanatory variables and the β’s are 
parameters. 

Then the predictor function for the expected bypass probability 
for a given set of explanatory variables is a nonlinear function:  

The response given the predictor function is assumed to follow a 
Beta distribution parameterized such that Y ~ Beta(μ, ) and  
E(Y) = µ and Var(Y) = µ(1 - µ)/( + 1). 

p̂

It follows that the likelihood for a sample of size n is then 
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In practice the true sampling variances are not known, so 
estimates are used.  The probability density function for a single 
observation is then   

where the yi are the detection probability estimates        , the μB 

are functions of the vector of the regression parameters β, and 
the T are functions of the process precision parameter P and 
the individual sampling variance estimates. 
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Table 1. Top five models by AIC ranking.   

Prediction 

Fig. 5. Observed vs. predicted plot for 
model fit to 1997-2010 data with 
predictions for 2011 overlaid.   

Fig. 6. Observed bypass probability 
estimates with 95% CI’s (black) with 
model predictions (blue) with both 
95% CI’s for means (blue) and 95% 
prediction intervals (green).   

Fig. 4. Predicted SPE functions for steelhead at Lower Granite Dam for RSW 
on or off under various levels of water velocity. 

Model predictions for 2011 data were consistently low early in the 
season but most observations were still within the prediction error 
bands. 

• The top three models accounted for nearly 100% of the 
cumulative AIC weight, with the only differences between 
models being in the FGE component (Table 1).  All three had 
the fullest model for SPE. 

• Observed versus predicted plot for the best model (Fig. 2) 
indicates decent correlation but there is still a substantial 
amount of unexplained variation.    

• The FGE function for the best model was a decreasing function 
of temperature (Fig. 3).  Temperature and day are highly 
correlated, but temperature performed better than day (the 
day term in model 2 was also not significant).  

• SPE was greater when RSW was on, but the effect of RSW was 
greatest under lower water velocities (Fig. 4).  The importance 
of the velocity*RSW interaction is evidenced by the large 
decrease in AIC when it is added to the model (Table 1). 
 

I = intercept, T = temperature (°C), D = day of year, R = average daily proportion RSW on,  Sp = logit transformed spill 
proportion, V = water velocity (km/day). 

Fig. 2. Observed vs. predicted plot for 
model fit to 1997-2010 data for 
steelhead at Lower Granite Dam.   

Fig. 3. FGE function for best fitting 
model, where FGE is a function of 
water temperature.   
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