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The problem

I Markov Chain Monte Carlo (MCMC) takes too long in many
settings. How can we get a good approximation fast?
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Integrated Nested Laplace Approximation (INLA)

I One possible solution is INLA

I The idea: for certain types of models, we can break the
posterior integration up into a nested product of
low-dimensional integrals. We can then approximately
numerically integrate these with high accuracy

I Laplace approximation
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Latent Gaussian models

I Assume exponential family observations: yi
I Mean: µi
I Link function: g(·)
I Predictor: ηi = g(µi ) with,

ηi = α +

nf∑
j=1

f (j)(uji )︸ ︷︷ ︸
(smooth fxns)

+

nβ∑
k=1

βkzki︸ ︷︷ ︸
(linear fxns)

+εi

I Give Gaussian priors to these parameters

I Applications: spatial models, GMRFs, regression models,
dynamic models

I Set f (j)(us) = fs for spatial application
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INLA Overview

I Let x be all n Gaussian variables (parameters) {ηi}, α,
{
f (j)
}

,
{βk}, and {εi}

I Let θ = (θ1,θ2)T be the hyperparameters

I π(x|θ1): Gaussian with zero mean and precision Q(θ1)

I π(x|θ): Gaussian with zero mean and precision Q(θ)
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INLA Overview

Then:

π(x,θ|y) ∝ π(θ)π(x|θ)
∏
i∈I

π(yi |xi ,θ)

∝ π(θ) |Q(θ)|1/2 exp

{
−1

2
xTQ(θ)x +

∑
i∈I

log {π(yi |xi ,θ)}

}

I Goal:
approximate posterior marginals π(xi |y), π(θ|y), π(θj |y)

I If Q(θ) is sparse (i.e. under conditional independence)
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INLA Overview

π(xi |y) =

∫
π(xi |θ, y)π(θ|y) dθ

π(θj |y) =

∫
π(θ|y) dθ−j

approximated with:

π̃(xi |y) =

∫
π̃(xi |θ, y)π̃(θ|y) dθ

π̃(θj |y) =

∫
π̃(θ|y) dθ−j

π̃(θ|y) ∝ π(x,θ, y)

π̃G (x|θ, y)

∣∣∣∣
x=x∗(θ)

I π̃G (x|θ, y): Gaussian (Laplace) approximation
I x∗(θ): mode of π(x|θ)
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Approximating π(θ|y)

 328 H. Rue, S. Martino and N. Chopin

 second derivatives of log{7r(0|y)} by using the difference between successive gradient
 vectors. The gradient is approximated by using finite differences. Let 0* be the modal
 configuration.

 (b) Step 2: at the modal configuration 0* compute the negative Hessian matrix H > 0, using
 finite differences. Let S = H-1, which would be the covariance matrix for 0 if the den-
 sity were Gaussian. To aid the exploration, use standardized variables z instead of 0. Let
 £ = VAVT be the eigendecomposition of £, and define 0 via z, as follows:

 0(z) = 0*+VA1/2z.

 If n (0|y) is a Gaussian density, then z is jV(0, 1). This reparameterization corrects for.scale
 and rotation, and simplifies numerical integration; see for example Smith et al (1987).

 (c) Step 3: explore log{7r(0|y)} by using the z-parameterization. Fig. 1 illustrates the proce-
 dure when log{7?(0|y)} is unimodal. Fig. l(a) shows a contour plot of log{7r(0|y)} for
 m = 2, the location of the mode and the mew co-ordinate axis for z. We want to explore
 log{7r(0|y)} to locate the bulk of the probability mass. The result of this procedure is
 displayed in Fig. l(b). Each dot is a point where log{7r(0|y)} is considered as significant,
 and which is used in the numerical integration (5). Details are as follows. We start from
 the mode (z = 0) and go in the positive direction of z\ with step length 6Z say Sz = 1, as
 long as

 log[7r{0(O|y}] - log[7r{0(z)|y}] <6n (11)

 where, for example, 6n = 2.5. Then we switch direction and do similarly. The other co-
 ordinates are treated in the same way. This produces the black dots. We can now fill in
 all the intermediate values by taking all different combinations of the black dots. These

 new points (which are shown as gjey dots) are included if condition (11) holds. Since we
 lay out the points 0* in a regular grid, we may take all the area weights A* in equation (5)
 to be equal.

 (d) Approximating 7r(0j\y): posterior marginals for 0j can be obtained directly from 7f(0|y)
 by using numerical integration. However, this is computationally demanding, as we need
 to evaluate 7f(0|y) for a large number of configurations. A more feasible approach is to
 use the points that were already computed during steps 1-3 to construct an interpolant

 Fig. 1. Illustration of the exploration of the posterior marginal «for 0: in (a) the mode is located and the Hes-
 sian and the co-ordinate system for z are computed; in (b) each co-ordinate direction is explored (•) until the
 log-density drops below a certain limit; finally the new points (•) are explored
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Step 1: Find mode of log π̃(θ|y) using quasi-Newton method, θ∗

Step 2: Compute the negative Hessian, H, at θ∗, and set Σ = H−1

Step 3: Explore log π̃(θ|y) near θ∗ along principal axes of H on grid

Now we can construct interpolant and numerically evaluate
log π(θ|y) (since θ low-dim.)
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Approximating π(xi |θ, y): Gaussian approximation

I Cheapest approximation

I Use Gaussian Fisher-scoring. Already need to do this for
evaluating:

π̃(θ|y) ∝ π(x,θ, y)

π̃G (x|θ, y)

∣∣∣∣
x=x∗(θ)
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Approximating π(xi |θ, y): Laplace approximations

π̃LA(xi |θ, y) ∝ π(x,θ, y)

π̃GG (x−i |xi ,θ, y)

∣∣∣∣
x−i=x∗−i (xi ,θ)

x∗−i (xi ,θ) ≈ Eπ̃G (x−i |xi )

⇒
Eπ̃G (xj |xi )− µj(θ)

σj(θ)
= aij(θ)

xi − µi (θ)

σi (θ)

π̃LA(xi |θ, y) ∝ N
(
xi ;µi (θ), σ2i (θ)

)
exp {cubic spline(xi )}

I π̃GG is the Gaussian approximation

I µi (θ), σ2i (θ): marginal mean, var of π̃G (xi |θ, y)

I Gauss-Hermite quadrature → π̃LA normalizing constant
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Approximating densities: Accuracy

I Accuracy depends on ‘effective number of parameters’ of x:

pD(θ) ≈ n − tr
{

Q(θ)Q∗(θ)−1
}

Low pD(θ)⇒ high accuracy

I For GMRF, asymptotic error rate is O(q/nd) for nd number
observations, q rank of x Gaussian distribution

I In most cases, approximation errors cancel out reducing error

rates from O(n−1d ) to O(n
−3/2
d )

I These results apply to both approximations of π(x|θ, x) and
of π(θ|y)
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Approximating densities: Assessing errors

Idea 1:

π(θ|y)

π̃(θ|y)
∝ Eπ̃G

[
exp

{∑
i

hi (xi )

}]

Where hi is log {π(yi |xi ,θ)} minus the second order term of
its Taylor expansion around x∗i (θ)

Idea 2: Compute symmetric Kullback Leibler divergence (SKLD) for
Gaussian, Laplace, and simplified Laplace approximations
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Examples: AR(1) model with unknown mean

0.08s vs. 25s of computation time:

 Approximate Bayesian Inference for Latent Gaussian Models 335

 Fig. 2. (a), (b) True latent Gaussian field (

 (d) approximate marginal for a selected node by using various approximations (

 simplified Laplace;

 marginal computed with the simplified Laplace approximation
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Examples: A generalized linear mixed model for
longitudinal data

1.5s vs. “hours” of computation time:

 Approximate Bayesian Inference for Latent Gaussian Models 337

 Fig. 3. Posterior marginal for (a) 0Q (

 mation) and (b) re (

 a long MCMC run using OpenBUGS

 5. 3. Stochastic volatility models
 Stochastic volatility models are frequently used to analyse financial time series. Fig. 4(a) displays
 the logarithm of the «^ = 945 daily difference of the pound-dollar exchange rate from October
 1st, 1981, to June 28th, 1985. This data set has been analysed by Durbin and Koopman (2000),
 among others. There has been much interest in developing efficient MCMC methods for such
 models, e.g. Shephard and Pitt (1997) and Chib et al. (2002).

 The observations are taken to be

 ^I^^A/*{0, exp(r/,)}, t=l9...9nd. (26)

 The linear predictor consists of two terms, rjt = // + /,, where ft is a first-order auto-regressive
 Gaussian process

 /rl/l,...,/r-l,r,0-M0/r-l,l/r), |</>|< 1,

 and ii is a Gaussian mean value. In this example, x = (/i, 771 , . . . , tjt)t and 0 = (0, r)T. The log-
 likelihood (with respect to rjt) is quite far from being Gaussian and is non-symmetric. There is
 some evidence that financial data have heavier tails than the Gaussian distribution, so a Student
 ^-distribution with unknown degrees of freedom can be substituted for the Gaussian distribu-
 tion in expression (26); see Chib et al (2002). We consider this modified model at the end of this
 example.

 We use the following priors: r~T(l, 0.1), </>'~AT(39l)9 where </>=2 exp(0')/{l+exp((//)}- 1,
 and /i ~ Af(0, 1 ) . We display the results for the Laplace approximation of the posterior marginals
 of the two hyperparameters and /i, but based on only the first 50 observations in Figs 4(b)-4(d),
 as using the full data set makes the approximation problem easier. The full curve in Fig. 4(d) is
 the marginal that was found by using simplified Laplace approximations and the broken curve
 uses Gaussian approximations, but in this case there are little differences (the SKLD is 0.05).
 The histograms are constructed from the output of a long MCMC run using OpenBUGS. The
 approximations that were computed are very precise and no deviance (in any node) can be
 detected. The results that were obtained by using the full data set are similar but the marginals
 are narrower (not shown).
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Examples: Stochastic volatility model

11s vs. “long”:

 338 H. Rue, S. Martino and N. Chopin

 Fig. 4. (a) Log-daily-difference of the pound-dollar exchange rate from October 1st, 1981, to June 28th,
 1985, (b), (c) approximated posterior marginals for <j> and r by using only the first n = 50 observations in (a)
 (overlaid are the histograms that were obtained from a long MCMC run using OpenBUGS), (d) approximated
 posterior marginal by using simplified Laplace approximations (

 for //, which is the node in the latent field with maximum SKLD, (e) posterior marginal for the degrees of free-
 dom assuming Student ^-distributed observations and (f) 0.025, 0.5 and 0.975 posterior quantiles for 77/
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Examples: Mapping cancer incidence rates

34s vs. “long”:

 Approximate Bayesian Inference for Latent Gaussian Models 341

 Fig. 5. Results for the cancer incidence example: (a) posterior marginal for £p by using simplified Laplace
 approximations (

 terior median (

 from a long MCMC run (•); (c) posterior median of the (smooth) spatial effect

 We start by dividing the area of interest into a 200 x 100 regular lattice, where each square
 pixel of the lattice represents 25 m2. This makes rid = 20000. The scaled and centred versions
 of the altitude and norm of the gradient are shown in Figs 6(b) and 6(c) respectively. For the
 spatial structured term, we use a second-order polynomial intrinsic GMRF (see Rue and Held
 (2005), section 3.4.2), with following full conditionals in the interior (with obvious notation)
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Examples: Log-Gaussian Cox process

10hrs (simplified Laplace) vs. 10 min
(Gaussian) vs. “long” (MCMC):

 342 H. Rue, S. Martino and N. Chopin

 Fig. 6. Data and covariates from the log-Gaussian Cox process example: (a) locations of the 3605 trees,
 (b) altitude and (c) norm of the gradient
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Questions?
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