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The problem

» Markov Chain Monte Carlo (MCMC) takes too long in many
settings. How can we get a good approximation fast?




Integrated Nested Laplace Approximation (INLA)

» One possible solution is INLA

» The idea: for certain types of models, we can break the
posterior integration up into a nested product of
low-dimensional integrals. We can then approximately
numerically integrate these with high accuracy

» Laplace approximation



Latent Gaussian models

» Assume exponential family observations: y;
» Mean: u;

» Link function: g(-)

» Predictor: n; = g(p;) with,
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» Give Gaussian priors to these parameters

» Applications: spatial models, GMRFs, regression models,
dynamic models

» Set fU)(ug) = £ for spatial application



INLA Overview
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Let x be all n Gaussian variables (parameters) {n;}, a, {0},
{Bk}, and {&;}

Let @ = (681,02)" be the hyperparameters

7(x|01): Gaussian with zero mean and precision Q(61)

v

v

v

m(x|@): Gaussian with zero mean and precision Q(0)



INLA Overview

Then:
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» Goal:

approximate posterior marginals 7(x;|y), 7(6]y), 7(6;|y)

» If Q(0) is sparse (i.e. under conditional independence)



INLA Overview
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approximated with:
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» Tc(x|0,y): Gaussian (Laplace) approximation
> x*(0): mode of 7(x|0)



Approximating 7(60|y)
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Fig. 1. ion of the ion of the p i i 6:in (a) the mode is located and the Hes-
sian and the co-ordinate system for z are oompuled in (b) each co-ordinate direction is explored () until the
log-density drops below a certain limit; finally the new points (e) are explored

Step 1: Find mode of log 7(8|y) using quasi-Newton method, 8™
Step 2: Compute the negative Hessian, H, at 8%, and set X = H1
Step 3: Explore log 7 (8|y) near 6" along principal axes of H on grid

Now we can construct interpolant and numerically evaluate
log (@]y) (since 6 low-dim.)



Approximating 7(x;|@,y): Gaussian approximation

» Cheapest approximation

» Use Gaussian Fisher-scoring. Already need to do this for
evaluating:
m(x,0,y)

7(0ly) x =
( ‘ ) WG(X‘O,y) X=X*(9)




Approximating m(x;|@,y): Laplace approximations
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» 7 cc is the Gaussian approximation
> ui(0), 0?(0): marginal mean, var of 7g(x;|0,y)
» Gauss-Hermite quadrature — 7 4 normalizing constant



Approximating densities: Accuracy

v

Accuracy depends on ‘effective number of parameters’ of x:
po(8) ~ n —tr {Q(6)Q"(6) 1)

Low pp(@) = high accuracy

» For GMRF, asymptotic error rate is O(q/ng) for ng number
observations, g rank of x Gaussian distribution

» In most cases, approximation errors cancel out reducing error
rates from O(n;") to (’)(n;3/2)

» These results apply to both approximations of 7(x|@,x) and
of m(ly)
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Approximating densities: Assessing errors

Idea 1:

w0 o [ I
7ﬁi_(0|y) X Eﬂ'G [ p{zi:hl( I)}]

Where h; is log {m(y;|x;, @)} minus the second order term of
its Taylor expansion around x(0)

Idea 2: Compute symmetric Kullback Leibler divergence (SKLD) for
Gaussian, Laplace, and simplified Laplace approximations
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Examples: AR(1) model with unknown mean

0.08s vs. 25s of computation time:

for a selected node by using ‘approximations.
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Examples: A generalized linear mixed model for
longitudinal data

1.5s vs. “hours” of computation time:
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(a) (b)
Fig... Postator margina for (2 . sivlfled Laace appramalion: ... Gaussian approxi-
mation) and (b) ¢ after lmnguﬁng out, 7y) for the example in Section 5.: 2 the hlslogr!ms result from

along MCMC run wng ising OpenBUGS.
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Examples: Stochastic volatility model

11s vs. “long":
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Fig. 4. (a) Log-daily-difference of the pound-dollar exchange rate from October 1st, 1981, to June 28th,
1985, (6), : narginals for  and T by using only
aid o th @ IGMC run using OpenBUGS). (d) approximated
posterior margin tions (——) and Ga
for y, which is the KLD, (e) posterior margin
i i 025, 0.5 and 0.975 poster "t
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Examples: Mapping cancer incidence rates
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34s vs. “long”

Fig.5. Results for the cancer incidence example: (a) posterior marginal for /4 by ud»g-lmplmod Laplace
) Gaussian aproxima

tror median (——) and 0.025- and 0.975-quantiles (-------) the age—class onaa u\d results obtained
along MCMC o (-) (c) pomrior nwdl-n of the (smooth) w-l effect
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Examples: Log-Gaussian Cox process

10hrs (simplified Laplace) vs. 10 min
(Gaussian) vs. “long” (MCMC):
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©
Fig. 6. Data and covariates from the log-Gaussian Cox process example: (a) locations of the 3605 trees,
(b) alttude and (c) norm of the gradient
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Questions?
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