Introduction to Hamiltonian Monte Carlo Method

Mingwei Tang

Department of Statistics
University of Washington

mingwt@uw.edu

November 14, 2017
Hamiltonian System

- Notation: $q \in \mathbb{R}^d$: position vector, $p \in \mathbb{R}^d$: momentum vector
- Hamiltonian $H(p, q): \mathbb{R}^{2d} \rightarrow \mathbb{R}^1$
- Evolution equation for Hamilton system

$$\begin{align*}
\frac{dq}{dt} &= \frac{\partial H}{\partial p} \\
\frac{dp}{dt} &= -\frac{\partial H}{\partial q}
\end{align*}$$ \quad (1)
Potential and Kinetic

- Decompose the Hamiltonian

\[H(p, q) = U(q) + K(p). \]

- \(U(q) \): potential energy depend on position
- \(K(p) \): Kinetic energy depend on momentum

Motivating example: Free fall

\[U(q) = mgq \]
\[K(p) = \frac{1}{2} mv^2 = \frac{p^2}{2m} \]

\[H(p, q) = mgq + \frac{p^2}{2m} \] is the total energy

- Velocity: \(v = \frac{dq}{dt} = \frac{\partial H}{\partial p} = \frac{p}{m} \)

- Force \(F = \frac{dp}{dt} = -\frac{\partial H}{\partial q} = -mg \)
1. Reversibility:
 - The mapping $T_s: (q(t), p(t)) \rightarrow (q(t + s), p(t + s))$ is one-to-one
 - Has inverse T_{-s}: negate p, apply T_s. negate p again

2. Conserved (Hamiltonian invariant)
 \[
 \frac{dH}{dt} = \frac{dq}{dt} \frac{\partial H}{\partial q} + \frac{dp}{dt} \frac{\partial H}{\partial p} = \frac{\partial H}{\partial p} \frac{\partial H}{\partial q} - \frac{\partial H}{\partial q} \frac{\partial H}{\partial p} = 0
 \]
 $H(p, q)$ is constant over time t.

3. Volume preservation:
 - The map T_s preserves the volume
 - For small δ, Jacobian $\left| \det \left(\frac{\partial T_\delta}{\partial (p, q)} \right) \right| \approx 1$
Idea of HMC

- **D**: Observed data, **q**: parameters (latent variables), \(\pi(q) \) prior distribution
- Likelihood function \(L(D|q) \)
- Posterior distribution
 \[
 \Pr(q|D) \propto L(D|q)\pi(q)
 \]
- Position — parameters, potential \(U(q) \) — log-posterior
 \[
 U(q) = -\log [L(D|q)\pi(q)]
 \]
- Introduce ancillary variable \(p \) for Kinetic energy
 \[
 K(p) = \sum_{i=1}^{d} \frac{p_i^2}{2m_i} \propto \log (\mathcal{N}(0, \mathbf{M}))
 \]
 \(p, q \) are independent
- Hamiltonian: \(H(p, q) = U(q) + K(p) \)
Now we defined $U(q)$ and $K(p)$. Relate that to a distribution

- **Canonical distribution**

$$
Pr(p, q) = \frac{1}{Z} \exp \left(-\frac{H(p, q)}{T} \right) = \frac{1}{Z} \exp \left(-\frac{U(q)}{T} \right) \exp \left(-\frac{K(p)}{T} \right) \quad (2)
$$

where T: temperature, Z normalizing constant

- Usually set $T = 1$, $Pr(q, p) \propto$ Posterior distribution \times Multivaranit Guassian

- **Goal:** sample (p, q) jointly from canonical distribution
Ideal HMC

- Specify variance matrix \mathbf{M}, time $s > 0$
- For $i = 1, \ldots, N$
 1. Sample $p^{(i)}$ from $\mathcal{N}(0, \mathbf{M})$
 2. Starting with current $(p^{(i)}, q^{(i-1)})$, integral on Hamiltonian system for s period:

$$ (p^*, q^*) \leftarrow T_s((p^{(i)}, q^{(i-1)})) $$

(leaves $H(\cdot, \cdot)$ invariant)
 3. $q^{(i)} \leftarrow q^*$, $p^{(i)} \leftarrow -p^*$

- Output $q^{(1)}, \ldots, q^{(N)}$ as posterior samples
- Problem: The Hamiltonian system may not have a closed-form solution
 Need numerical method to for ODE system
Numerical ODE integrator

- Targeting problem:

\[
\begin{align*}
\frac{dq}{dt} &= \frac{\partial H}{\partial p} = M^{-1} p \\
\frac{dp}{dt} &= -\frac{\partial H}{\partial q} = \nabla \log (L(D|q)p(q))
\end{align*}
\]

- Leap-frog method, for small time $\epsilon > 0$

\[
\begin{align*}
p(t + \epsilon/2) &= p(t) - (\epsilon/2) \frac{\partial U}{\partial q}(q(t)) \\
q(t + \epsilon) &= q(t) + \epsilon M^{-1} p(t + \epsilon/2) \\
p(t + \epsilon) &= p(t + \epsilon/2) - (\epsilon/2) \frac{\partial U}{\partial q}(q(t + \epsilon/2))
\end{align*}
\]
Numerical stability for Hamiltonian system

(a) Euler’s Method, stepsize 0.3

(b) Modified Euler’s Method, stepsize 0.3

(c) Leapfrog Method, stepsize 0.3

(d) Leapfrog Method, stepsize 1.2
Property of Leap frog

- Time reversibility: Integrate n steps forward and then n steps backward, arrive at same starting position.
- Symplectic property: Converse the (slightly modified) energy
Specify variance M, time $s > 0$

For $i = 1, \ldots, N$

1. Sample $p^{(i)}$ from $\mathcal{N}(0, M)$

2. Starting with current $(p^{(i)}, q^{(i-1)})$, integral on Hamiltonian system for s period:

$$ (p^*, q^*) \leftarrow T_s((p^{(i)}, q^{(i-1)})) $$

3. $q^{(i)} \leftarrow q^*$, $p^{(i)} \leftarrow -p^*$

Output $q^{(1)}, \ldots, q^{(N)}$ as posterior samples

Numerical method does not leave $H(p, q)$ unchanged during integration

$$ H((p^*, q^*)) \neq H((p^{(i)}, q^{(i-1)})) $$

Need to adjust that
HMC in practice

- Specify variance matrix \mathbf{M}, step size $\epsilon > 0$, L : number of the leap frog steps

- For $i = 1, \ldots, N$
 1. Sample $p^{(i)}$ from $\mathcal{N}(0, \mathbf{M})$
 2. Starting with current $(p^{(i)}, q^{(i-1)})$,

 $$(p^*, q^*) \leftarrow \text{Leapfrog}(p^{(i)}, q^{(i-1)}, \epsilon, L)$$

 $p^* \leftarrow -p^*$
 3. Metropolis-Hastings with probability

 $$\alpha = \min \left\{ 1, \frac{\Pr(p^*, q^*)}{\Pr(p^{(i)}, q^{(i-1)})} \right\}$$

 set $q^{(i)} \leftarrow q^*$, $p^{(i)} \leftarrow p^*$
 (leaves canonical distribution invariant)

- Output $q^{(1)}, \ldots, q^{(N)}$ as posterior samples
Comparison with random walk Metropolis-Hastings

- HMC: proposal based on Hamiltonian dynamics, not random walk
- Random walk Metropolis-Hastings (RWMH) need more steps to get an independent sample
- Optimum acceptance: HMC (65%), RWMH (23%)
- Computation d:
 - Number of iterations to get a independent sample: $\mathcal{O}(d^{1/4})$ vs RWMH: $\mathcal{O}(d)$
 - Total number of computations $\mathcal{O}(d^{5/4})$ vs RWMH: $\mathcal{O}(d^2)$

See (Roberts et al. 2001) and (Neal 2011) for more details
Tuning parameters

- **Stepsizes ϵ:**
 - Large ϵ: Low acceptance rate
 - Small ϵ: Waste computation, random walk behavior (ϵL) too small
 - Might need different ϵ for different region, e.g. choose ϵ by random

- **Number of leap-frog steps L:**
 - Trajectory length is crucial for exploring state space systematically
 - More constrained in some directions, but much less constrained in other directions
 - U-turns in long-trajectory
NUTS

- Solution: No-U-Turn Sampler (NUTS) (Hoffman et al. 2014)
 - Adaptive way to select number of leap-frog step L
 - Adaptive way to select step size ϵ
- The exact algorithm behind Stan!
NUTS: Select L

- **Criterion for "U-turns"**

\[
\frac{d}{dt} \frac{||q_t - q_0||^2}{2} = (q_t - q_0)^T \cdot p_t < 0
\]

- **Start from** $(p^{(i)}, q^{(i-1)})$

1. Run leap-frog steps until (3) happens. Have candidate set B of (p, q) pairs
2. Select subset $C \subseteq B$ satisfies detail balanced equation
3. Random select $q^{(i)}$ from C
Selecting stepsize ϵ

- Warm-up phase M_{adapt}
- H_t be the acceptance probability at t-th iterations e.g
 \[H_t = \min \left\{ 1, \frac{\Pr(p^*, q^*)}{\Pr(p^{(t)}, q^{(t-1)})} \right\} \]
- $h_t(\epsilon) = \mathbb{E}_t[H_t|\epsilon]$
- one step Dual averaging in each iteration for solving
 \[h_t(\epsilon) = \delta \]
 where δ is the optimum acceptance rate, for HMC $\delta = 0.65$
- Find ϵ after M_{adapt} iterations
Summary

- **HMC**: A MCMC algorithm make use of Hamiltonian dynamics
 - Parameters as position, posterior likelihood as potential energy
 - Propose new state based on Hamiltonian dynamics
 - Leap-frog for numerical simulation, sensitive for tuning

- **NUTS**: A HMC with adaptive tuning on \((L, \epsilon)\) for more efficient proposal
 - \(L\): Avoid U-turns
 - \(\epsilon\): Dual-averaging optimization to make the acceptance rate close to optimum
Implement your Own HMC

- Review the Hamiltonian dynamics

\[
\begin{align*}
\frac{dq}{dt} &= \frac{\partial H}{\partial p} = M^{-1}p \\
\frac{dp}{dt} &= -\frac{\partial H}{\partial q} = \nabla \log (L(D|q)\pi(q))
\end{align*}
\]

- Need gradient

\[\nabla \log (L(D|q)\pi(q)) = \nabla \log (L(D|q)) + \nabla \log(\pi(q))\]

- Stan: automatic gradient calculation

- Gradient: Stan can do gradient-based optimization (quasi-Newton method L-BFGS)