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Motivation

o Kriging provides optimal spatial predictions

@ Inversion of n x n covariance matrices may require O(n?)
computations

@ Goal of paper was to develop methodology that reduces
computational cost of kriging to O(n)
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Kriging

o Let {Y(s):s € D C R} be a real-valued spatial process.
Consider the process Z(-) of actual and potential observations

Z(s) = Y(s) + ¢(s),

where {¢(s) : s € D} is a spatial white noise process with mean
0 and var {e(s)} = o2v(s) for %> > 0 and v(-) known.
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Kriging

@ The hidden process Y(s) is assumed to have a linear mean

structure,

Y(s) = t(s)'ax + v(s),
where t(-) = (t1(+), ..., tp(+)) is a vector process of known
covariates; the coefficients ac = (a4 (), ..., ap(+))" are unknown,

and the process v(-) has 0 mean and var {v(s)} < oo, and a
generally non-stationary spatial covariance function,

cov{v(u),v(v)} = C(u,v), u,veD
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Kriging

@ Can write the model in matrix form as:
Z:Ta+5, 6:V+€7

where E(d) = 0 and var(d) = X = (0;;), where

C(si,sj) +0°v(s), i=]
;=
Y Clsis)), i
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Kriging

@ The kriging predictor of Y(sp) is:
Y (s0) = t(so) & + k(so)'(Z — Té&),
@ where
a= (T ') 'z,
k(so) = c(so)'X 7,
and c(sg) = (C(so,S1), - -, C(so,sn))"
@ The kriging standard error is:
O'k(So) = {C(So, So) — k(So)IZk(So)

+(t(s0) — T'k(s0)) (T'E1T) " (t(so) — T'k(so))}/*
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Kriging

@ Advantages:

e The kriging predictors are BLUP
e Least squares allows simple matrix calculations to obtain
estimators

@ Disadvantages:

o The inversion of X requires calculations of O(n%), so
e Calculations become computationally burdensome or intractable
with massive n
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Spatial covariance function

@ Consider a set of r basis functions

S(u) = (S1(u),..., S (u)),

where u € R? and r is fixed.

@ For any r x r positive-definite matrix K, we model
cov{Y(u), Y(v))} with

C(u,v) = S(u)'KS(v)
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Spatial covariance function

@ The relationship C(u,v) = S(u)’KS(v) follows from letting
v(s) = S(s)'n and writing the model equation as:
Y(s) = t(s)'a+S(s)'n
@ Here mis a r x 1 vector of random variables,

e with var(n) =K
e So var(Y(s)) = var(S(s)'n) = S(s)'KS(s)
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Fixed rank kriging

@ We can write the n x n theoretical covariance matrix of Y as
C = SKS/, and so

¥ = SKS' + 52V,

where the unknown parameters are K, a positive-definite r x r
matrix, and 02 > 0. Both S, the n x r matrix whose (i, /)
element is S(s;), and V are assumed known.
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Fixed rank kriging

o After some manipulation, the inverse of the covariance of Y can
be written as:

Tl = (02V) = (0?V) IS {K 1+ §/(0?V) 1S} T S/ (02V)

e This is advantageous because X! involves inverting the fixed
rank r X r positive-definite matrices S and K and the n x n
diagonal matrix V.
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Fixed rank kriging

@ The fixed rank kriging predictor of Y(sp) is:
Y(so) = t(so)'é& + S(so)KS'ETH(Z — Té&),

where & = (T'Z'T)'T'E 'z
@ The model therefore requires a fixed rank r x r covariance

matrix K to be estimated and a set of basis functions (in
general, non-orthogonal) to be chosen.

@ The overall compuational cost is O(nr?) instead of O(n®)
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Covariance functions

o Consider a covariance function using the Karhunen-Loéve
expansion:

Gi(u,v) = Z Aigi(u)pi(v),

where {);} are non-negative eigenvalues and {¢;} are
orthonormal eigenfunctions.

@ If you truncate at the kth term of the expansion you get:

Co(u,v) = Z Aigi(u)oi(v) = ¢(u) Ag(v),

where A is a k X k diagonal matrix of positive eigenvalues.
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Covariance functions

e Consider the eigen (spectral) decomposition
K = PAP’
o |t follows that

C(u,v) = S(u)'KS(v)
= S(u)’PAP'S(v)
= (P'S(u))'A(P'S(v))

@ So the P’S(-) are like non-orthogonal versions of the functions
¢(+) in a truncated Karhunen-Loéve expansion.
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Basis functions

No requirement of orthogonality

Among others, can include smoothing spline, wavelet, or radial
basis functions

©

Multi-resolutional basis functions are recommended

®

Unclear what effects different classes of functions have on
outcomes

Beneficial to use a class where it is quick to evaluate S'V—1S
and S’a for any a

[
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Fitting the covariance function

©00 0060

Establish a set of M bin centers, where r < M < n.

Use bin centers to define a set of neighborhood weights, w;;.

Calculate method-of-moments estimate )A:M based on binned
data and weights using formula presented in Appendix.

Calculate S and V, which are binned versions of S and V
Calculate the Q-R decomposition S = QR
Define

Tu(K,0?) = QQ'ELQQ + 3V - QQ'VQQ)
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Fitting the covariance function

@ Estimate 52 by minimizing with respect to o2 the Frobenius
norm

HiM — im(k702)|’2 =
> {Ew— PE) — (VPV}

where P(A) = QQ'AQQ’ for any M x M matrix A

@ Use resulting 52 in estimate of K:

K=R'Q(£y —4*V)Q(R™?)
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Data example: global ozone

@ Ozone depletion results in increased transmission of ultraviolet
radiation through the atmosphere, which can cause damage to
cells.

@ Nimbus-7 polar orbiting satellite used total ozone mapping
spectrometer to measure total column ozone (TCO) in
overlapping orbits

@ The entire globe was covered in a 24-hour period

@ Data were processed and resulted in daily measurements for 1°
latitude by 1.25° longitude grid cells

@ Here look at 173,405 TOC data available for October 1, 1988
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Figure 1. Level 2 TCO data on Oct. 1, 1988
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Basis functions for ozone data

@ Chose local bisquare function at 3 scales of variation

Sign(u) = {{1 = (lu=viol/nP} =iyl <

0, otherwise.

@ where vj() is one of the center points of the /th resolution
(I1=1,2,3)

@ r = 1.5d,, where d; = 4165, d, = 1610, and d; = 1435 km are
the distances between center points.

@ The number of functions are 32, 92, and 272 for the 3 levels of
resolution, resulting in r = 396 basis functions
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Figure 2. Center points of 3 resolutions on discrete global grid.
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Calculations for ozone data

@ A fourth resolution of M = 812 center points was established
and data were binned for initial parameter estimation

o After computing method-of-moments estimator 3 ./, estimates
for K and o2 were obtained assuming a constant mean
(E(Y)=a)and V =1

@ Estimates of K and o2 were then substituted into the kriging
predictor and standard error equations

@ Number of computations per prediction location in the kriging
equations is O(nr?)
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Figure 3. Semivariograms (square root scale) for different locations.
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Figure 4. Fixed rank kriging predictor of TCO.
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0.13
Fig. 5. FRK standard errors of the TCO predictions that are shown in Fig. 4, in Dobson units

24 / 24



