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Motivation

Kriging provides optimal spatial predictions

Inversion of n × n covariance matrices may require O(n3)
computations

Goal of paper was to develop methodology that reduces
computational cost of kriging to O(n)
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Kriging

Let
{
Y (s) : s ∈ D ⊂ Rd

}
be a real-valued spatial process.

Consider the process Z (·) of actual and potential observations

Z (s) ≡ Y (s) + ε(s),

where {ε(s) : s ∈ D} is a spatial white noise process with mean
0 and var {ε(s)} = σ2v(s) for σ2 > 0 and v(·) known.
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Kriging

The hidden process Y (s) is assumed to have a linear mean
structure,

Y (s) = t(s)′α + ν(s),

where t(·) ≡ (t1(·), . . . , tp(·))′ is a vector process of known
covariates; the coefficients α ≡ (α1(·), . . . , αp(·))′ are unknown,
and the process ν(·) has 0 mean and var {ν(s)} <∞, and a
generally non-stationary spatial covariance function,

cov {ν(u), ν(v)} ≡ C (u, v), u, v ∈ D

3 / 24



Kriging

Can write the model in matrix form as:

Z = Tα + δ, δ = ν + ε,

where E(δ) = 0 and var(δ) = Σ ≡ (σi ,j), where

σi ,j =

{
C (si , sj) + σ2v(s), i = j

C (si , sj), i 6= j .

4 / 24



Kriging

The kriging predictor of Y (s0) is:

Ŷ (s0) = t(s0)′α̂ + k(s0)′(Z− Tα̂),

where
α̂ = (T′Σ−1T)−1T′Σ−1Z,

k(s0)′ = c(s0)′Σ−1,

and c(s0) = (C (s0, s1), . . . ,C (s0, sn))′.

The kriging standard error is:

σk(s0) = {C (s0, s0)− k(s0)′Σk(s0)

+(t(s0)− T′k(s0))′(T′Σ−1T)−1(t(s0)− T′k(s0))
}1/2
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Kriging

Advantages:

The kriging predictors are BLUP
Least squares allows simple matrix calculations to obtain
estimators

Disadvantages:

The inversion of Σ requires calculations of O(n3), so
Calculations become computationally burdensome or intractable
with massive n
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Spatial covariance function

Consider a set of r basis functions

S(u) ≡ (S1(u), . . . , Sr (u))′,

where u ∈ Rd and r is fixed.

For any r × r positive-definite matrix K, we model
cov {Y (u),Y (v))} with

C (u, v) = S(u)′KS(v)
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Spatial covariance function

The relationship C (u, v) = S(u)′KS(v) follows from letting
ν(s) = S(s)′η and writing the model equation as:

Y (s) = t(s)′α + S(s)′η

Here η is a r × 1 vector of random variables,

with var(η) = K

So var(Y (s)) = var(S(s)′η) = S(s)′KS(s)
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Fixed rank kriging

We can write the n × n theoretical covariance matrix of Y as
C = SKS′, and so

Σ = SKS′ + σ2V,

where the unknown parameters are K, a positive-definite r × r
matrix, and σ2 > 0. Both S, the n × r matrix whose (i , l)
element is Sl(si), and V are assumed known.
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Fixed rank kriging

After some manipulation, the inverse of the covariance of Y can
be written as:

Σ−1 = (σ2V)−1 − (σ2V)−1S
{

K−1 + S′(σ2V)−1S
}−1

S′(σ2V)−1

This is advantageous because Σ−1 involves inverting the fixed
rank r × r positive-definite matrices S and K and the n × n
diagonal matrix V.
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Fixed rank kriging

The fixed rank kriging predictor of Y (s0) is:

Ŷ (s0) = t(s0)′α̂ + S(s0)′KS′Σ−1(Z− Tα̂),

where α̂ = (T′Σ−1T)−1T′Σ−1Z.

The model therefore requires a fixed rank r × r covariance
matrix K to be estimated and a set of basis functions (in
general, non-orthogonal) to be chosen.

The overall compuational cost is O(nr 2) instead of O(n3)
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Covariance functions

Consider a covariance function using the Karhunen-Loéve
expansion:

C1(u, v) ≡
∞∑
i=1

λiφi(u)φi(v),

where {λi} are non-negative eigenvalues and {φi} are
orthonormal eigenfunctions.

If you truncate at the kth term of the expansion you get:

C2(u, v) =
k∑

i=1

λiφi(u)φi(v) ≡ φ(u)′Λφ(v),

where Λ is a k × k diagonal matrix of positive eigenvalues.
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Covariance functions

Consider the eigen (spectral) decomposition

K = PΛP′

It follows that

C (u, v) = S(u)′KS(v)

= S(u)′PΛP′S(v)

= (P′S(u))′Λ(P′S(v))

So the P′S(·) are like non-orthogonal versions of the functions
φ(·) in a truncated Karhunen-Loéve expansion.
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Basis functions

No requirement of orthogonality

Among others, can include smoothing spline, wavelet, or radial
basis functions

Multi-resolutional basis functions are recommended

Unclear what effects different classes of functions have on
outcomes

Beneficial to use a class where it is quick to evaluate S′V−1S
and S′a for any a
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Fitting the covariance function

1 Establish a set of M bin centers, where r < M < n.

2 Use bin centers to define a set of neighborhood weights, wji .

3 Calculate method-of-moments estimate Σ̂M based on binned
data and weights using formula presented in Appendix.

4 Calculate S̄ and V̄, which are binned versions of S and V

5 Calculate the Q-R decomposition S̄ = QR

6 Define

Σ̄M(K̂, σ2) = QQ′Σ̂MQQ′ + σ2(V̄ −QQ′V̄QQ′)

15 / 24



Fitting the covariance function

7 Estimate σ̂2 by minimizing with respect to σ2 the Frobenius
norm

‖Σ̂M − Σ̄M(K̂, σ2)‖2 =∑
j ,k

{
(Σ̂M − P(Σ̂M))jk − σ2(V̄ − P(V̄))jk

}2

,

where P(A) ≡ QQ′AQQ′ for any M ×M matrix A

8 Use resulting σ̂2 in estimate of K:

K̂ = R−1Q′(Σ̂M − σ̂2V̄)Q(R−1)′
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Data example: global ozone

Ozone depletion results in increased transmission of ultraviolet
radiation through the atmosphere, which can cause damage to
cells.

Nimbus-7 polar orbiting satellite used total ozone mapping
spectrometer to measure total column ozone (TCO) in
overlapping orbits

The entire globe was covered in a 24-hour period

Data were processed and resulted in daily measurements for 1◦

latitude by 1.25◦ longitude grid cells

Here look at 173,405 TOC data available for October 1, 1988
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Figure 1. Level 2 TCO data on Oct. 1, 1988
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Basis functions for ozone data

Chose local bisquare function at 3 scales of variation

Sj(l)(u) ≡

{{
1− (‖u− vj(l)‖/rl)2

}2
, ‖u− vj(l)‖ ≤ rl

0, otherwise.

where vj(l) is one of the center points of the lth resolution
(l = 1, 2, 3)

rl = 1.5dl , where d1 = 4165, d2 = 1610, and d3 = 1435 km are
the distances between center points.

The number of functions are 32, 92, and 272 for the 3 levels of
resolution, resulting in r = 396 basis functions
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Figure 2. Center points of 3 resolutions on discrete global grid.
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Calculations for ozone data

A fourth resolution of M = 812 center points was established
and data were binned for initial parameter estimation

After computing method-of-moments estimator Σ̂M , estimates
for K and σ2 were obtained assuming a constant mean
(E(Y ) = α) and V = I

Estimates of K and σ2 were then substituted into the kriging
predictor and standard error equations

Number of computations per prediction location in the kriging
equations is O(nr 2)
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Figure 3. Semivariograms (square root scale) for different locations.
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Figure 4. Fixed rank kriging predictor of TCO.
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